如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn)。![]()
(1)求證:BD⊥AE;
(2)求點(diǎn)A到平面BDE的距離.
(1)詳見(jiàn)解析,(2)![]()
解析試題分析:(1)證明線線垂直,有兩個(gè)思路,一是在平面幾何中利用勾股定理,二是利用線面垂直轉(zhuǎn)化.而異面直線垂直只能利用線面垂直轉(zhuǎn)化.因?yàn)锳C⊥BD,所以證明思路為證明BD⊥面ACE,而關(guān)鍵CC1⊥BD就可得到證明.(2)求點(diǎn)A到平面BDE的距離也有兩個(gè)思路,一是作出A到平面BDE的距離,即垂線段,二是利用體積求高.本題作出A到平面BDE較為復(fù)雜,所以優(yōu)先考慮利用體積求高.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/3/bovjl2.png" style="vertical-align:middle;" />,所以![]()
![]()
試題解析:(1)連結(jié)AC
ABCD-A1B1C1D1是正方體,
AC⊥BD,CC1⊥ABCD
又
BD
面ABCD,
CC1⊥BD
又
AC
C1C=C,
BD⊥面ACE
又
AE
面ACE,
BD⊥AE
(2)設(shè)A到面BDE的距離為h
正方體的棱長(zhǎng)為2,E為C1C中點(diǎn),![]()
![]()
![]()
考點(diǎn):線線垂直判定,等體積求點(diǎn)到平面距離
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P—ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
AD=1,CD=
.![]()
(1)若點(diǎn)M是棱PC的中點(diǎn),求證:PA∥平面BMQ;
(2)若二面角M—BQ—C為30°,設(shè)PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在五面體
中,四邊形
是邊長(zhǎng)為
的正方形,
平面
,
,
,
,
.![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=
AB.Q是PC上的一點(diǎn).![]()
⑴求證:平面PAD⊥面PBD;
⑵當(dāng)Q在什么位置時(shí),PA∥平面QBD?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在斜三棱柱
中,側(cè)面
⊥底面
,側(cè)棱
與底面
成60°的角,
.底面
是邊長(zhǎng)為2的正三角形,其重心為
點(diǎn),
是線段
上一點(diǎn),且
.
(1)求證:
//側(cè)面
;
(2)求平面
與底面
所成銳二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱
的底面是邊長(zhǎng)為2的正三角形,且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)。![]()
(1)求證:
平面
;
(2)求二面角
的大小;
(3)求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱
中,D、E分別是BC和
的中點(diǎn),已知AB=AC=AA1=4,ÐBAC=90°.![]()
(1)求證:
⊥平面
;
(2)求二面角
的余弦值;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐PABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=
AD.若E、F分別為PC、BD的中點(diǎn),求證:![]()
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com