【題目】某種新產(chǎn)品投放市場(chǎng)一段時(shí)間后,經(jīng)過(guò)調(diào)研獲得了時(shí)間
(天數(shù))與銷(xiāo)售單價(jià)
(元)的一組數(shù)據(jù),且做了一定的數(shù)據(jù)處理(如表),并作出了散點(diǎn)圖(如圖).
![]()
|
|
|
|
|
|
|
1.63 | 37.8 | 0.89 | 5.15 | 0.92 |
| 18.40 |
表中
.
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)更適合作價(jià)格
關(guān)于時(shí)間
的回歸方程類(lèi)型?(不必說(shuō)明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立
關(guān)于
的回歸方程.
(3)若該產(chǎn)品的日銷(xiāo)售量
(件)與時(shí)間
的函數(shù)關(guān)系為
,求該產(chǎn)品投放市場(chǎng)第幾天的銷(xiāo)售額最高?最高為多少元?
附:對(duì)于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘法估計(jì)分別為
.
【答案】(1)
,(2)
,(3)該產(chǎn)品投放市場(chǎng)第
天的銷(xiāo)售額最高,最高為
元.
【解析】
(1)題中給出的散點(diǎn)圖類(lèi)似于反比例函數(shù)的圖象,據(jù)此可選出回歸方程的類(lèi)型;
(2)根據(jù)公式計(jì)算回歸方程即可;
(3)根據(jù)回歸方程和
得到銷(xiāo)售額關(guān)于
的函數(shù),再配方可得最值.
(1)依據(jù)散點(diǎn)圖,可知圖象所表示得函數(shù)接近反比例函數(shù),故
更適合作價(jià)格
關(guān)于時(shí)間
的回歸方程類(lèi)型;
(2)令![]()
,先建立
關(guān)于
的線性回歸方程,
由于
,所以
,
所以
關(guān)于
的線性方程為
,
所以
關(guān)于
的線性回歸方程為
.
(3)日銷(xiāo)售額![]()
![]()
![]()
![]()
所以
時(shí),
取得最大值
元.
即該產(chǎn)品投放市場(chǎng)第
天的銷(xiāo)售額最高,最高為
元.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知直線l過(guò)點(diǎn)P(2,2).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐標(biāo)方程;
(2)若l與C交于A,B兩點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中錯(cuò)誤的是
![]()
A. 若命題
為真命題, 命題
為假命題, 則命題“
”為真命題
B. 命題“若
,則
或
”為真命題
C. 對(duì)于命題
,
,則
,![]()
D. “
”是“
”的充分不必要條件個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知點(diǎn)
,圓
的方程為
,點(diǎn)
是圓
上任意一點(diǎn),線段
的垂直平分線
和直線
相交于點(diǎn)
.
(1)當(dāng)點(diǎn)
在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡方程;
(2)過(guò)點(diǎn)
能否作一條直線
,與點(diǎn)
的軌跡交于
兩點(diǎn),且點(diǎn)
為線段
的中點(diǎn)?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過(guò)
立方米的部分按4元/立方米收費(fèi),超出
立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
![]()
(1)如果
為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米,
至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)
時(shí),估計(jì)該市居民該月的人均水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2019·武漢六中]袋子中有四個(gè)小球,分別寫(xiě)有“武、漢、軍、運(yùn)”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“軍”“運(yùn)”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“軍、運(yùn)、武、漢”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù):
232 321 230 023 123 021 132 220
231 130 133 231 331 320 122 233
由此可以估計(jì),恰好第三次就停止的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(
已知函數(shù)
,(
)
(Ⅰ)討論函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)
在區(qū)間
內(nèi)是減函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列
的前
項(xiàng)和為
,已知
,![]()
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前
項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽.若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為
,乙獲勝的概率為
各局比賽結(jié)果相互獨(dú)立.則甲在4局以?xún)?nèi)(含4局)贏得比賽的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com