已知函數(shù)![]()
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,對定義域內(nèi)任意x,均有
恒成立,求實數(shù)a的取值范圍?
(Ⅲ)證明:對任意的正整數(shù)
,
恒成立。
(Ⅰ)
在
;(Ⅱ)
;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間,首先確定定義域
,可通過單調(diào)性的定義,或求導(dǎo)確定單調(diào)區(qū)間,由于
,含有對數(shù)函數(shù),可通過求導(dǎo)來確定單調(diào)區(qū)間,對函數(shù)
求導(dǎo)得
,由此令
,
,解出
就能求出函數(shù)
的單調(diào)區(qū)間;(Ⅱ)若
,對定義域內(nèi)任意
,均有
恒成立,求實數(shù)
的取值范圍,而
,對定義域內(nèi)任意
,均有
恒成立,屬于恒成立問題,解這一類題,常常采用含有參數(shù)
的放到不等式的一邊,不含參數(shù)
(即含
)的放到不等式的另一邊,轉(zhuǎn)化為函數(shù)的最值問題,但此題用此法比較麻煩,可考慮求其最小值,讓最小值大于等于零即可,因此對函數(shù)
求導(dǎo),利用導(dǎo)數(shù)確定最小值,從而求出
的取值范圍;(Ⅲ)由(Ⅱ)知,當(dāng)
時,
,當(dāng)且僅當(dāng)
時,等號成立,這個不等式等價于
,即
,由此對任意的正整數(shù)
,不等式
恒成立.
試題解析:(Ⅰ)定義域為(0,+∞),
,
,所以
在
(4分)
(Ⅱ)
,當(dāng)
時,
在
上遞減,在
上遞增,
,當(dāng)
時,
不可能成立,綜上
;(9分)
(Ⅲ)令
,
相加得到![]()
得證。(14分)
考點:函數(shù)與導(dǎo)數(shù),函數(shù)的單調(diào)區(qū)間,函數(shù)與不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
在
上為增函數(shù),且
,求解下列各題:
(1)求
的取值范圍;
(2)若
在
上為單調(diào)增函數(shù),求
的取值范圍;
(3)設(shè)
,若在
上至少存在一個
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)當(dāng)
,
時,求函數(shù)
的最大值;
(2)令
,其圖象上存在一點
,使此處切線的斜率
,求實數(shù)
的取值范圍;
(3)當(dāng)
,
,
時,方程
有唯一實數(shù)解,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)若函數(shù)
在點
處的切線與圓
相切,求
的值;
(2)當(dāng)
時,函數(shù)
的圖像恒在坐標(biāo)軸
軸的上方,試求出
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
.
(Ⅰ)設(shè)
(其中
是
的導(dǎo)函數(shù)),求
的最大值;
(Ⅱ)求證:當(dāng)
時,有
;
(Ⅲ)設(shè)
,當(dāng)
時,不等式
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的雙曲線
的一個焦點是
,一條漸近線的方程是
.
(1)求雙曲線
的方程;(2)若以
為斜率的直線
與雙曲線
相交于兩個不同的點
,且線段
的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量
(單位:千克)與銷售價格
(單位:元/千克)滿足關(guān)系式
其中
為常數(shù).己知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求
的值;
(2)若該商品的成本為3元/千克,試確定銷售價格
的值,使商場每日銷售該商品所獲得利潤最大.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com