【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為
,此時四面體ABCD的外接球的表面積為 .
【答案】7π
【解析】解:根據題意可知三棱錐B﹣ACD的三條側棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,
三棱柱ABC﹣A1B1C1的中,底面邊長為1,1,
,
由題意可得:三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴三棱柱ABC﹣A1B1C1的外接球的球心為O,外接球的半徑為r,
棱柱的高為
,球心到底面的距離為
,
三棱柱中,底面△BDC,BD=CD=1,BC=
,∴∠BDC=120°,∴△BDC的外接圓的半徑為:
=1
∴球的半徑為r=
=
.
外接球的表面積為:4πr2=7π.
故答案為:7π.
三棱錐B﹣ACD的三條側棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出正三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,然后求球的表面積.
科目:高中數學 來源: 題型:
【題目】給定橢圓
,稱圓
為橢圓
的“伴隨圓”.已知點
是橢圓
上的點
(1)若過點
的直線
與橢圓
有且只有一個公共點,求
被橢圓
的伴隨圓
所截得的弦長:
(2)
是橢圓
上的兩點,設
是直線
的斜率,且滿足
,試問:直線
是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)若f(-1)=f(1),求a,并直接寫出函數
的單調增區間;
(2)當a≥
時,是否存在實數x,使得
=一
?若存在,試確定這樣的實數x的個數;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.
(1)求A∩(UB);
(2)若A∪C=C,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班準備從甲、乙、丙等6人中選出4人參加某項活動,要求甲、乙、丙三人中至少有兩人參加,那么不同的方法有 ( )
A. 18種 B. 12種 C. 432種 D. 288種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】高鐵、網購、移動支付和共享單車被譽為中國的“新四大發明”,彰顯出中國式創新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調查,得到如下數據:
每周移動支付次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,按分層抽樣的方法,在我市所有“移動支付達人”中,隨機抽取6名用戶
求抽取的6名用戶中,男女用戶各多少人;
② 從這6名用戶中抽取2人,求既有男“移動支付達人”又有女“移動支付達人”的概率.
(2)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,填寫下表,問能否在犯錯誤概率不超過0.01的前提下,認為“移動支付活躍用戶”與性別有關?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
![]()
非移動支付活躍用戶 | 移動支付活躍用戶 | 合計 | |
男 | |||
女 | |||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,已知直線
上兩點
的極坐標分別為
,圓
的參數方程為
(
為參數).
(1)設
為線段
的中點,求直線
的平面直角坐標方程;
(2)判斷直線
與圓
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以坐標原點O為極點,O軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=2(sinθ+cosθ+
).
(1)寫出曲線C的參數方程;
(2)在曲線C上任取一點P,過點P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定理:“實數m,n為常數,若函數
滿足
,則函數
的圖象關于點
成中心對稱”.
(1)已知函數
的圖象關于點
成中心對稱,求實數b的值;
(2)已知函數
滿足
,當
時,都有
成立,且當
時,
,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com