閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
------①
------②
由①+② 得
------③
令
有![]()
代入③得
.
(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
;
(Ⅱ)若
的三個(gè)內(nèi)角
滿足
,試判斷
的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)
(1)結(jié)合兩角和的余弦公式來聯(lián)立方程組來求解得到。
(2)直角三角形
解析試題分析:解法一:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6f/8/1vz8a4.png" style="vertical-align:middle;" />, ①
, ② 2分
①-② 得
. ③ 3分
令
有
,
代入③得
. 6分
(Ⅱ)由二倍角公式,
可化為
, 8分
即
. 9分
設(shè)
的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為
,
由正弦定理可得
. 11分
根據(jù)勾股定理的逆定理知
為直角三角形. 12分
解法二:(Ⅰ)同解法一.
(Ⅱ)利用(Ⅰ)中的結(jié)論和二倍角公式,
可化為
, 8分
因?yàn)锳,B,C為
的內(nèi)角,所以
,
所以
.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d2/a/2amgc1.png" style="vertical-align:middle;" />,所以
,
所以
.
從而
. 10分
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4c/1/1iagy3.png" style="vertical-align:middle;" />,所以
,即
.
所以
為直角三角形. 12分
考點(diǎn):兩角和與差三角函數(shù)公式、二倍角公式
點(diǎn)評(píng):本小題主要考查兩角和與差三角函數(shù)公式、二倍角公式、三角函數(shù)的恒等變換等基礎(chǔ)知識(shí),考查推理論證能力,運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想等
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象過點(diǎn)(0,
),最小正周期為
,且最小值為-1.
(1)求函數(shù)
的解析式.
(2)若
,
的值域是
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為
的內(nèi)角
的對(duì)邊,滿足
,函數(shù)![]()
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減.
(Ⅰ)證明:
;
(Ⅱ)若
,證明
為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,以
軸為始邊,兩個(gè)銳角
,
的終邊分別與單位圓相交于A,B 兩點(diǎn).![]()
(Ⅰ)若
,
,求
的值;
(Ⅱ)若角
的終邊與單位圓交于
點(diǎn),設(shè)角
的正弦線分別為
,試問:以
作為三邊的長(zhǎng)能否構(gòu)成一個(gè)三角形?若能,請(qǐng)加以證明;若不能,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com