| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)把下列的極坐標(biāo)方程化為直角坐標(biāo)方程(并說明對應(yīng)的曲線):
①
②![]()
(2)把下列的參數(shù)方程化為普通方程(并說明對應(yīng)的曲線):
③
④![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長度,已知直線
經(jīng)過點(diǎn)P(1,1),傾斜角![]()
(1)寫出直線
的參數(shù)方程;(2)設(shè)
與圓
相交與A,B,求點(diǎn)P到A,B兩點(diǎn)的距離積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分
分)
在平面直角坐標(biāo)系xoy中,已知四邊形OABC是平行四邊形,
,點(diǎn)M是OA的中點(diǎn),點(diǎn)P在線段BC上運(yùn)動(dòng)(包括端點(diǎn)),如圖
(Ⅰ)求∠ABC的大小;
(II)是否存在實(shí)數(shù)λ,使
?若存在,求出滿足條件的實(shí)數(shù)λ的取值范圍;若不存在,請說明理由。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知極坐標(biāo)系下曲線
的方程為
,直線
經(jīng)過點(diǎn)
,傾斜角
.
(Ⅰ)求直線
在相應(yīng)直角坐標(biāo)系下的參數(shù)方程;
(Ⅱ)設(shè)
與曲線
相交于兩點(diǎn)
,求點(diǎn)
到
兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在直角坐標(biāo)系XOY中,以O(shè)為極點(diǎn),X軸正半軸為極軸建立極坐標(biāo)系。曲線C的極坐標(biāo)方程是:
,M,N分別是曲線C與X、Y軸的交點(diǎn)。
(1)寫出C的直角坐標(biāo)系方程。并求M,N的極坐標(biāo)。
(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,
是圓的內(nèi)接三角形,
的平分線交圓于點(diǎn)
,交
于點(diǎn)
,過點(diǎn)
的圓的切線與
的延長線交于點(diǎn)
.在上述條件下,給出下列四個(gè)結(jié)論:
①
平分
;②
;③
;④
.
則所有正確結(jié)論的序號(hào)是![]()
| A.①② | B.③④ | C.①②③ | D.①②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,已知⊙O的半徑為5,兩弦AB、CD相交于AB的中點(diǎn)E,且AB=8,CE∶ED=4∶9,則圓心到弦CD的距離為![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,在△ABC中,M在BC上,N在AM上,CM=CN,且
=
,下列結(jié)論中正確的是 ( ).![]()
| A.△ABM∽△ACB |
| B.△ANC∽△AMB |
| C.△ANC∽△ACM |
| D.△CMN∽△BCA |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com