【題目】已知
,
分別為雙曲線
的左、右焦點(diǎn),以
為直徑的圓與雙曲線在第一象限和第三象限的交點(diǎn)分別為
,
,設(shè)四邊形
的周長(zhǎng)為
,面積為
,且滿足
,則該雙曲線的離心率為______.
【答案】![]()
【解析】
本題首先可根據(jù)題意繪出圖像并設(shè)出
點(diǎn)坐標(biāo)為
,然后通過(guò)圓與雙曲線的對(duì)稱性得出
,再根據(jù)“點(diǎn)
即在圓上,也在雙曲線上”聯(lián)立方程組得出
,然后根據(jù)圖像以及
可得
和
,接下來(lái)利用雙曲線定義得出
以及
,最后根據(jù)
并通過(guò)化簡(jiǎn)求值即可得出結(jié)果。
![]()
如圖所示,根據(jù)題意繪出雙曲線與圓的圖像,設(shè)
,
由圓與雙曲線的對(duì)稱性可知,點(diǎn)
與點(diǎn)
關(guān)于原點(diǎn)對(duì)稱,所以
,
因?yàn)閳A是以
為直徑,所以圓的半徑為
,
因?yàn)辄c(diǎn)
在圓上,也在雙曲線上,所以有
,
聯(lián)立化簡(jiǎn)可得
,整理得
,
,
,所以
,
因?yàn)?/span>
,所以
,
,
因?yàn)?/span>
,所以
,
因?yàn)?/span>
,聯(lián)立
可得
,
,
因?yàn)?/span>
為圓的直徑,所以
,
即
,
,
,
,
,
,所以離心率
。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眾所周知,大型網(wǎng)絡(luò)游戲(下面簡(jiǎn)稱網(wǎng)游)的運(yùn)行必須依托于網(wǎng)絡(luò)的基礎(chǔ)上,否則會(huì)出現(xiàn)頻繁掉線的情況,進(jìn)而影響游戲的銷售和推廣,某網(wǎng)游經(jīng)銷在甲地區(qū)5個(gè)位置對(duì)兩種類型的網(wǎng)絡(luò)(包括“電信”和“網(wǎng)通”)在相同條件下進(jìn)行游戲掉線的測(cè)試,得到數(shù)據(jù)如下:
位置 類型 | A | B | C | D | E |
電信 | 4 | 3 | 8 | 6 | 12 |
網(wǎng)通 | 5 | 7 | 9 | 4 | 3 |
(1)如果在測(cè)試中掉線次數(shù)超過(guò)5次,則網(wǎng)絡(luò)狀況為“糟糕”,否則為“良好”,那么在犯錯(cuò)誤的概率不超過(guò)0.15的前提下,能否說(shuō)明網(wǎng)絡(luò)狀況與網(wǎng)絡(luò)的類型有關(guān)?
(2)若該游戲經(jīng)銷商要在上述接受測(cè)試的電信的5個(gè)地區(qū)中任選2個(gè)作為游戲推廣,求A,B兩地區(qū)至少選到一個(gè)的概率.
參考公式:
.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,其中
.
(1)當(dāng)
時(shí),
的零點(diǎn)個(gè)數(shù);
(2)若
的整數(shù)解有且唯一,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知棱臺(tái)
,平面
平面
,
,
,
,D,E分別是
和
的中點(diǎn)。
![]()
(Ⅰ)證明:
;
(Ⅱ)求
與平面
所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本
(元)與生產(chǎn)該產(chǎn)品的數(shù)量
(千件)有關(guān),經(jīng)統(tǒng)計(jì)得到如下數(shù)據(jù):
![]()
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
![]()
觀察散點(diǎn)圖,兩個(gè)變量不具有線性相關(guān)關(guān)系,現(xiàn)考慮用反比例函數(shù)模型
和指數(shù)函數(shù)模型
分別對(duì)兩個(gè)變量的關(guān)系進(jìn)行擬合.已求得用指數(shù)函數(shù)模型擬合的回歸方程為
,
與
的相關(guān)系數(shù)
.參考數(shù)據(jù)(其中
):
![]()
(1)用反比例函數(shù)模型求
關(guān)于
的回歸方程;
(2)用相關(guān)系數(shù)判斷上述兩個(gè)模型哪一個(gè)擬合效果更好(精確到0.01),并用其估計(jì)產(chǎn)量為10千件時(shí)每件產(chǎn)品的非原料成本;
(3)該企業(yè)采取訂單生產(chǎn)模式(根據(jù)訂單數(shù)量進(jìn)行生產(chǎn),即產(chǎn)品全部售出).根據(jù)市場(chǎng)調(diào)研數(shù)據(jù),若該產(chǎn)品單價(jià)定為100元,則簽訂9千件訂單的概率為0.8,簽訂10千件訂單的概率為0.2;若單價(jià)定為90元,則簽訂10千件訂單的概率為0.3,簽訂11千件訂單的概率為0.7.已知每件產(chǎn)品的原料成本為10元,根據(jù)(2)的結(jié)果,企業(yè)要想獲得更高利潤(rùn),產(chǎn)品單價(jià)應(yīng)選擇100元還是90元,請(qǐng)說(shuō)明理由.
參考公式:對(duì)于一組數(shù)據(jù)
,
,…,
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
,相關(guān)系數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代十進(jìn)制的算籌計(jì)數(shù)法,在數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造,算籌實(shí)際上是一根根同長(zhǎng)短的小木棍.如圖,是利用算籌表示數(shù)
的一種方法.例如:3可表示為“
”,26可表示為“
”.現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用
這9數(shù)字表示兩位數(shù)的個(gè)數(shù)為
![]()
![]()
A.13B.14C.15D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
,且
時(shí),試求函數(shù)
的最小值;
(2)若對(duì)任意的
恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
是
的極大值點(diǎn),求
的取值范圍;
(2)當(dāng)
,
時(shí),方程
(其中
)有唯一實(shí)數(shù)解,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
和動(dòng)直線
.直線
交拋物線
于
兩點(diǎn),拋物線
在
處的切線的交點(diǎn)為
.
(1)當(dāng)
時(shí),求以
為直徑的圓的方程;
(2)求
面積的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com