【題目】已知函數(shù)f(x)=
sinx+cosx.
(1)求f(x)的最大值;
(2)設(shè)g(x)=f(x)cosx,x∈[0,
],求g(x)的值域.
【答案】
(1)解:∵函數(shù)f(x)=
sinx+cosx=2sin(x+
),故函數(shù)f(x)=
sinx+cosx的最大值為2.
(2)解:∵x∈[0,
],∴x+
∈[
,
],∴g(x)=f(x)cosx=
sin2x+
=sin(2x+
)+
∈[1,
],
即函數(shù)g(x)的值域?yàn)閇1,
]
【解析】(1)利用三角恒等變換,化簡(jiǎn)函數(shù)f(x)的解析式,再利用正弦函數(shù)的值域求得它的最大值.(2)利用三角恒等變換,化簡(jiǎn)函數(shù)g(x)的解析式,再利用正弦函數(shù)的定義域和值域求得它的值域.
【考點(diǎn)精析】本題主要考查了三角函數(shù)的最值的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)
,當(dāng)
時(shí),取得最小值為
;當(dāng)
時(shí),取得最大值為
,則
,
,
才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>0,
是R上的偶函數(shù).
(1)求a的值;
(2)證明:f(x)在(0,+∞)上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
與
為互相垂直的單位向量,
,
且
與
的夾角為銳角,則實(shí)數(shù)λ的取值范圍是( )
A.(﹣∞,﹣2) ![]()
B.(
,+∞)
C.(﹣2,
) ![]()
D.(﹣
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
和
滿足
若
為等比數(shù)列,且![]()
(1)求
和
;
(2)設(shè)
,記數(shù)列
的前
項(xiàng)和為![]()
①求
;
②求正整數(shù) k,使得對(duì)任意
均有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
=(1,2),
=(﹣3,2),當(dāng)k為何值時(shí):
(1)k
+
與
﹣3
垂直;
(2)k
+
與
﹣3
平行,平行時(shí)它們是同向還是反向?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱
中,側(cè)面
為菱形且
,
,
分別為
和
的中點(diǎn),
,
,
.
![]()
(Ⅰ)證明:直線
∥平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
![]()
(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過5000步的概率;
(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的
列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)
在以
為直徑的圓
上,
垂直與圓
所在平面,
為
的垂心.
![]()
(1)求證:平面
平面
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com