【題目】計算:
(1)12×(﹣
)+8×2﹣2﹣(﹣1)2
(2)解不等式
≤
,并求出它的正整數解.
【答案】
(1)解:原式=﹣4+2﹣1=﹣3
(2)解:去分母得:3x﹣6≤14﹣2x,
移項合并得:5x≤20,
解得:x≤4,
則不等式的正整數解為1,2,3,4
【解析】(2)原式第一項利用異號兩數相乘的法則計算,第二項利用負指數冪法則計算,最后一項利用乘方的意義化簡,計算即可得到結果.
【考點精析】解答此題的關鍵在于理解整數指數冪的運算性質的相關知識,掌握aman=am+n(m、n是正整數);(am)n=amn(m、n是正整數);(ab)n=anbn(n是正整數);am/an=am-n(a不等于0,m、n為正整數);(a/b)n=an/bn(n為正整數),以及對一元一次不等式的解法的理解,了解步驟:①去分母;②去括號;③移項;④合并同類項; ⑤系數化為1(特別要注意不等號方向改變的問題).
科目:初中數學 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經過點B(1,4)和點E(3,0)兩點.![]()
(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標;
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標;
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知P是線段AB的黃金分割點,且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長是AB,寬是PB的矩形的面積,則S1S2 . (填“>”“=”或“<”) ![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1 , y1),P2(x2 , y2),我們把|x1﹣x2|+|y1﹣y2|叫做P1、P2兩點間的直角距離,記作d(P1 , P2).
(1)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(2)設P0(x0 , y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0 , Q)的最小值叫做P0到直線y=ax+b的直角距離.試求點M(2,1)到直線y=x+2的直角距離.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數y=﹣
x2+bx+c的圖象經過B、C兩點.![]()
(1)求該二次函數的解析式;
(2)結合函數的圖象探索:當y>0時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在平面直角坐標系中放置了5個如圖所示的正方形(用陰影表示),點B1在y軸上,點C1、E1、E2、C2、E3、E4、C3在x軸上.若正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3 , 則點A3到x軸的距離是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊AD與矩形EFGH的邊FG重合,將正方形ABCD以1cm/s的速度沿FG方向移動,移動開始前點A與點F重合,在移動過程中,邊AD始終與邊FG重合,連接CG,過點A作CG的平行線交線段GH于點P,連接PD.已知正方形ABCD的邊長為1cm,矩形EFGH的邊FG,GH的長分別為4cm,3cm,設正方形移動時間為x(s),線段GP的長為y(cm),其中0≤x≤2.5. ![]()
(1)試求出y關于x的函數關系式,并求當y=3時相應x的值;
(2)記△DGP的面積為S1 , △CDG的面積為S2 . 試說明S1﹣S2是常數;
(3)當線段PD所在直線與正方形ABCD的對角線AC垂直時,求線段PD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩地距離300km,一輛貨車和一輛轎車先后從甲地出發駛向乙地.如圖,線段OA表示貨車離甲地的距離y(km)與時間x(h)之間的函數關系,折線BCDE表示轎車離甲地的距離y(km)與時間x(h)之間的函數關系,根據圖象,解答下列問題: ![]()
(1)線段CD表示轎車在途中停留了h;
(2)求線段DE對應的函數解析式;
(3)求轎車從甲地出發后經過多長時間追上貨車.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點P(3,0),⊙P是以點P為圓心,2為半徑的圓,若一次函數y=kx+b的圖象過點A(﹣1,0)且與⊙P相切,則k+b的值為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com