分析 根據BD是∠ABC的平分線和DE∥BC得出∠2=∠3=∠1,即可知DE=BE,證△AED∽△ABC得$\frac{AE}{AB}=\frac{DE}{BC}$,即$\frac{4}{4+DE}=\frac{DE}{7}$,解之可得.
解答 解:如圖,![]()
∵BD是∠ABC的平分線,
∴∠2=∠3,
∵DE∥BC,
∴∠1=∠3,
∴∠1=∠2,
∴DE=BE,
∵DE∥BC,
∴△AED∽△ABC,
∴$\frac{AE}{AB}=\frac{DE}{BC}$,即$\frac{4}{4+DE}=\frac{DE}{7}$,
解得:DE=-2+4$\sqrt{2}$或DE=-2-4$\sqrt{2}$(舍),
即DE的長為-2+4$\sqrt{2}$.
點評 此題考查了平行線的性質,相似三角形的判定與性質以及等腰三角形的判定與性質等知識.解題的關鍵是熟練掌握相似三角形的判定與性質.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com