分析 (1)連接AC,由勾股定理可求出OC的長,進而得出C點坐標,同理,由切線的性質及勾股定理即可得出OB的長,進而求出B點坐標,再用待定系數法即可求出過BC兩點的直線解析式;
(2)過G點作x軸垂線,垂足為H,連接AG,設G(x0,y0),在Rt△ACG中利用銳角三角函數的定義可求出CG的長,
由勾股定理可得出BC的長,由OC∥GH可得出$\frac{OH}{BO}=\frac{CG}{BC}$,進而可求出G點坐標;
(3)假設△AEF為直角三角形,由AE=AF可判斷出△AEF為等腰三角形,可得出∠EAF=90°,過A作AM⊥BC于M,
在Rt△AEF中利用勾股定理可求出EF的長度,證出△BOC∽△BMA,由相似三角形的性質可得出A點坐標;當圓心A在點B的左側時,設圓心為A′,過A′作A′M′⊥BC于M′,可得△A′M′B′≌△AMB,由全等三角形的性質可得出A′點的坐標.
解答 解:(1)連接AC,則OC=2,故點C的坐標為(0,2),
∵BC為⊙O的切線,
∴AC⊥BC,
在Rt△ABC中,(OB+OA)2=BC2+AC2,即(OB+1)2=BC2+5①,
在Rt△OBC中,BC2=OB2+OC2,即BC2=OB2+4②,
①②聯立得,OB=4,
∴點B的坐標為(-4,0)
∴直線BC的解析式為y=$\frac{1}{2}$x+2;
故答案為:-4,0;y=$\frac{1}{2}$x+2;
(2)如圖1:
解法一:過G點作x軸垂線,垂足為H,連接AG,設G(x0,y0),
在Rt△ACG中,∠AGC=60°,AC=$\sqrt{5}$,求得CG=$\frac{\sqrt{15}}{3}$,
又∵OB=4,
∴BC=$\sqrt{O{B}^{2}+O{C}^{2}}$=2$\sqrt{5}$,
∵OC∥GH,
∴$\frac{OH}{BO}=\frac{CG}{BC}$,則OH=$\frac{2\sqrt{3}}{3}$,即x0=$\frac{2\sqrt{3}}{3}$,
又∵點G在直線BC上,
∴y0=$\frac{1}{2}$×$\frac{2\sqrt{3}}{3}$+2
=$\frac{\sqrt{3}}{3}$+2,
∴G($\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$+2),
解法二:過G點作y軸垂線,垂足為H,連接AG![]()
在Rt△ACG中,∠AGC=60°,AC=$\sqrt{5}$,∴CG=$\frac{\sqrt{15}}{3}$,
由△BCO∽△GCH,得$\frac{CH}{GH}=\frac{CO}{BO}=\frac{1}{2}$,
即GH=2CH,
在Rt△CHG中,CG=$\frac{\sqrt{15}}{3}$,GH=2CH,得CH=$\frac{\sqrt{3}}{3}$,HG=$\frac{2\sqrt{3}}{3}$,
∴G($\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$+2);
(3)方法一
如圖2:
在移動過程中,存在點A,使△AEF為直角三角形.
若△AEF為直角三角形
∵AE=AF
∴△AEF為等腰三角形,
∴∠AEF=∠AFE≠90°,
∴∠EAF=90°,
過A作AM⊥BC于M,
在Rt△AEF中,EF=$\sqrt{A{E}^{2}+A{F}^{2}}$=$\sqrt{10}$,
AM=$\frac{1}{2}$EF=$\frac{1}{2}\sqrt{10}$,
證出△BOC∽△BMA得,$\frac{OC}{AM}=\frac{BC}{AB}$,
而BC=$\sqrt{O{C}^{2}+O{B}^{2}}$=2$\sqrt{5}$,OC=2,可得AB=$\frac{5\sqrt{2}}{2}$
∴OA=4-$\frac{5\sqrt{2}}{2}$,
∴A(-4+$\frac{5\sqrt{2}}{2}$,0),
當圓心A在點B的左側時,設圓心為A′,
過A′作A′M′⊥BC于M′,可得△A′M′B′≌△AMB,
∴A′B=AB=$\frac{5\sqrt{2}}{2}$,
∴OA′=OB+A′B=4+$\frac{5\sqrt{2}}{2}$,
∴A′(-4-$\frac{5\sqrt{2}}{2}$,0),
∴A(-4+$\frac{5\sqrt{2}}{2}$,0)或A′(-4-$\frac{5\sqrt{2}}{2}$,0)
方法二:
如圖3,
在移動過程中,存在點A,使△AEF為直角三角形
若△AEF為直角三角形
∵AE=AF
∴△AEF為等腰三角形![]()
∴∠AEF=∠AFE≠90°
∴∠EAF=90°(11分)
過F作FM⊥x軸于M,EN⊥x軸于N,EH⊥MF于H
設AN=x,EN=y
由△AEN≌△FAM
可得AM=y,FM=x
FH=x-y
EH=x+y,由$\frac{FH}{EH}=\frac{OC}{OB}=\frac{1}{2}$,即$\frac{x-y}{x+y}=\frac{1}{2}$∴x=3y
在Rt△AEN中,
x2+y2=($\sqrt{5}$)2
x2+y2=5,
解得$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=\frac{\sqrt{2}}{2}}\end{array}\right.$,
又∵$\frac{EN}{BN}=\frac{OC}{OB}=\frac{1}{2}$,
∴BN=2y,BN=$\sqrt{2}$,
∴AB=$\frac{3\sqrt{2}}{2}$+$\sqrt{2}$=$\frac{5\sqrt{2}}{2}$,
∴OA=4-$\frac{5\sqrt{2}}{2}$,
∴A(-4+$\frac{5\sqrt{2}}{2}$,0),
以下同解法一,得A′(-4-$\frac{5\sqrt{2}}{2}$,0).
∴A$({-4+\frac{5}{2}\sqrt{2},0})$或$({-4-\frac{5}{2}\sqrt{2},0})$;
點評 此題是圓的綜合題,主要考查的是切線的性質及相似三角形的判定與性質、全等三角形的判定與性質,待定系數法求一次函數的解析式,涉及面較廣,難度較大.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com