【題目】對(duì)于四個(gè)數(shù)“
,
,
,
”及四種運(yùn)算“
,
,
,
”,列算式解答:
(1)求這四個(gè)數(shù)的和;
(2)在這四個(gè)數(shù)中選出兩個(gè)數(shù),按要求進(jìn)行下列計(jì)算,使得:
①兩數(shù)差的結(jié)果最小;
②兩數(shù)積的結(jié)果最大;
(3)在這四個(gè)數(shù)中選出三個(gè)數(shù),在四種運(yùn)算中選出兩種,組成一個(gè)算式,使運(yùn)算結(jié)果等于沒(méi)選的那個(gè)數(shù).
【答案】(1)
;(2)①
;②
;(3)
(答案不唯一).
【解析】
(1)將題目中的數(shù)據(jù)相加即可解答本題;
(2)①根據(jù)題目中的數(shù)字,可以寫(xiě)出結(jié)果最小的算式;
②根據(jù)題目中的數(shù)字,可以寫(xiě)出結(jié)果最大的算式;
(3)本題答案不唯一,主要符合題意即可.
解:(1)(-8)+(-2)+1+3=-6;
(2)由題目中的數(shù)字可得,
①
,結(jié)果最小;
②
,結(jié)果最大;
(3)由題目中的數(shù)字可得,
(答案不唯一).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)
的圖象與反比例函數(shù)
在第一象限的圖象交于
和
兩點(diǎn),與
軸交于點(diǎn)
連接![]()
![]()
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)
在
軸上,且
,求點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是雙曲線(xiàn)y=
上的動(dòng)點(diǎn),連結(jié)AO并延長(zhǎng)交雙曲線(xiàn)于點(diǎn)B,將線(xiàn)段AB繞B順時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段BC,點(diǎn)C在雙曲線(xiàn)y=
上的運(yùn)動(dòng),則k=____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)
與
軸交于點(diǎn)
,與
軸交于點(diǎn)
,經(jīng)過(guò)
、
兩點(diǎn)的拋物線(xiàn)
與
軸的另一交點(diǎn)
.
![]()
(1)求該拋物線(xiàn)的函數(shù)表達(dá)式;
(2)
是該拋物線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)
作
軸于點(diǎn)
,交
于點(diǎn)
,
交
軸于點(diǎn)
,設(shè)點(diǎn)
的橫坐標(biāo)為
.
①求出四邊形
的周長(zhǎng)
與
的函數(shù)表達(dá)式,并求
的最大值;
②當(dāng)
為何值時(shí),四邊形
是菱形;
③是否存在點(diǎn)
,使得以
、
、
為頂點(diǎn)的三角形與
相似?若存在,請(qǐng)求出滿(mǎn)足條件的點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】依托獨(dú)特的氣候資源,天然肥沃的優(yōu)質(zhì)土壤,廣元市大力推廣蔬菜種植,疫情防控期間,某蔬菜種植基地通過(guò)電商平臺(tái)將蔬菜銷(xiāo)往全國(guó)各地,銷(xiāo)量大幅度提升.該基地為提高蔬菜產(chǎn)量,計(jì)劃對(duì)甲、乙兩種型號(hào)蔬菜大棚進(jìn)行改造,根據(jù)預(yù)算,改造2個(gè)甲種型號(hào)大棚比1個(gè)乙種型號(hào)大棚多需資金6萬(wàn)元,改造1個(gè)甲種型號(hào)大棚和2個(gè)乙種型號(hào)大棚共需資金48萬(wàn)元.
(1)求改造1個(gè)甲種型號(hào)和1個(gè)乙種型號(hào)大棚所需資金分別是多少萬(wàn)元;
(2)已知改造1個(gè)甲種型號(hào)大棚需要5天,改造1個(gè)乙種型號(hào)大棚需要3天,該基地計(jì)劃用126萬(wàn)元資金改造一定數(shù)量的兩種型號(hào)蔬菜大棚,且要求改造時(shí)間總共不超過(guò)50天,請(qǐng)問(wèn):有幾種改造方案?哪種方案改造時(shí)間最短?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線(xiàn),在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(xiàn)(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以?xún)?nèi)?
(3)經(jīng)檢修評(píng)估,游樂(lè)園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+3經(jīng)過(guò)A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為D,連接AD,點(diǎn)P是線(xiàn)段AD上一個(gè)動(dòng)點(diǎn)(不與A,D重合),過(guò)點(diǎn)P作y軸的垂線(xiàn),垂足點(diǎn)為E,連接AE.
![]()
(1)求拋物線(xiàn)的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫(xiě)出自變量x的取值范圍,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)y=﹣x2+bx+c交y軸于點(diǎn)A(0,4),交x軸于點(diǎn)B(4,0),點(diǎn)P是拋物線(xiàn)上一動(dòng)點(diǎn),試過(guò)點(diǎn)P作x軸的垂線(xiàn)1,再過(guò)點(diǎn)A作1的垂線(xiàn),垂足為Q,連接AP.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式和點(diǎn)C的坐標(biāo);
(2)若△AQP∽△AOC,求點(diǎn)P的橫坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P位于拋物線(xiàn)的對(duì)稱(chēng)軸的右側(cè)時(shí),若將△APQ沿AP對(duì)折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為點(diǎn)Q′,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)Q′落在坐標(biāo)軸上時(shí)點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出):有同樣大小正方形256個(gè),拼成如圖1所示的
的一個(gè)大的正方形.請(qǐng)問(wèn)如果用一條直線(xiàn)穿過(guò)這個(gè)大正方形的話(huà),最多可以穿過(guò)多少個(gè)小正方形?
![]()
(問(wèn)題探究):我們先考慮以下簡(jiǎn)單的情況:一條直線(xiàn)穿越一個(gè)正方形的情況.(如圖2)
![]()
從圖中我們可以看出,當(dāng)一條直線(xiàn)穿過(guò)一個(gè)小正方形時(shí),這條直線(xiàn)最多與正方形上、下、左、右四條邊中的兩個(gè)邊相交,所以當(dāng)一條直線(xiàn)穿過(guò)一個(gè)小正方形時(shí),這條直線(xiàn)會(huì)與其中某兩條邊產(chǎn)生兩個(gè)交點(diǎn),并且以?xún)蓚(gè)交點(diǎn)為頂點(diǎn)的線(xiàn)段會(huì)全部落在小正方形內(nèi).
這就啟發(fā)我們:為了求出直線(xiàn)
最多穿過(guò)多少個(gè)小正方形,我們可以轉(zhuǎn)而去考慮當(dāng)直線(xiàn)
穿越由小正方形拼成的大正方形時(shí)最多會(huì)產(chǎn)生多少個(gè)交點(diǎn).然后由交點(diǎn)數(shù)去確定有多少根小線(xiàn)段,進(jìn)而通過(guò)線(xiàn)段的根數(shù)確定下正方形的個(gè)數(shù).
再讓我們來(lái)考慮
正方形的情況(如圖3):
![]()
為了讓直線(xiàn)穿越更多的小正方形,我們不妨假設(shè)直線(xiàn)
右上方至左下方穿過(guò)一個(gè)
的正方形,我們從兩個(gè)方向來(lái)分析直線(xiàn)
穿過(guò)
正方形的情況:從上下來(lái)看,這條直線(xiàn)由下至上最多可穿過(guò)上下平行的兩條線(xiàn)段;從左右來(lái)看,這條直線(xiàn)最多可穿過(guò)左右平行的四條線(xiàn)段;這樣直線(xiàn)
最多可穿過(guò)
的大正方形中的六條線(xiàn)段,從而直線(xiàn)
上會(huì)產(chǎn)生6個(gè)交點(diǎn),這6個(gè)交點(diǎn)之間的5條線(xiàn)段,每條會(huì)落在一個(gè)不同的正方形內(nèi),因此直線(xiàn)
最多能經(jīng)過(guò)5個(gè)小正方形.
(問(wèn)題解決):
(1)有同樣大小的小正方形16個(gè),拼成如圖4所示的
的一個(gè)大的正方形.如果用一條直線(xiàn)穿過(guò)這個(gè)大正方形的話(huà),最多可以穿過(guò)_________個(gè)小正方形.
![]()
(2)有同樣大小的小正方形256個(gè),拼成
的一個(gè)大的正方形.如果用一條直線(xiàn)穿過(guò)這個(gè)大正方形的話(huà),最多可以穿過(guò)___________個(gè)小正方形.
(3)如果用一條直線(xiàn)穿過(guò)
的大正方形的話(huà),最多可以穿過(guò)___________個(gè)小正方形.
(問(wèn)題拓展):
(4)如果用一條直線(xiàn)穿過(guò)
的大長(zhǎng)方形的話(huà)(如圖5),最多可以穿過(guò)個(gè)___________小正方形.
![]()
(5)如果用一條直線(xiàn)穿過(guò)
的大長(zhǎng)方形的話(huà)(如圖6),最多可以穿過(guò)___________個(gè)小正方形.
![]()
(6)如果用一條直線(xiàn)穿過(guò)
的大長(zhǎng)方形的話(huà),最多可以穿過(guò)________個(gè)小正方形.
(類(lèi)比探究):
由二維的平面我們可以聯(lián)想到三維的立體空間,平面中的正方形中四條邊可聯(lián)想到正方體中的正方形的六個(gè)面,類(lèi)比上面問(wèn)題解決的方法解決如下問(wèn)題:
(7)如圖7有同樣大小的小正方體8個(gè),拼成如圖所示的
的一個(gè)大的正方體.如果用一條直線(xiàn)穿過(guò)這個(gè)大正方體的話(huà),最多可以穿過(guò)___________個(gè)小正方體.
![]()
(8)如果用一條直線(xiàn)穿過(guò)
的大正方體的話(huà),最多可以穿過(guò)_________個(gè)小正方體.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com