【題目】已知關(guān)于
的一元二次方程 x2+(2m-1)x+m2=0有兩個實數(shù)根 x1 和 x2 .
(1)求實數(shù) m 的取值范圍;
(2)當(dāng) x12-x22 時,求 m 的值.
【答案】
(1)解:因為一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根,
∴△= b2-4ac=(2m-1)2-4×1×m2=-4m+1≥0,
∴m≤
,
即實數(shù)m的取值范圍為m≤ ![]()
(2)解:當(dāng)x12-x22=0時,即(x1+x2)(x1-x2)=0,∴x1+x2=0或x1-x2=0,當(dāng)x1+x2=0,依據(jù)一元二次方程根與系數(shù)的關(guān)系可得x1+x2=-(2m-1),∴-(2m-1)=0,∴m=
,又∵由(1)一元二次方程x2+(2m-1)x+m2=0有兩個實數(shù)根時的取值范圍是m≤
,∴m=
不成立,故m無解;當(dāng)x1-x2=0時,x1=x2,方程有兩個相等的實數(shù)根, ∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=
,綜上所述,當(dāng)x12-x22=0時,m= ![]()
【解析】(1)根據(jù)題意可知,方程有兩個實數(shù)根,則 b2-4ac≥0,建立不等式求解即可。
(2)將x12-x22=0變形為(x1+x2)(x1-x2)=0,在m取值范圍為m≤
時,分情況討論:當(dāng)x1+x2=0;x1-x2=0時,求出符合條件的m的值。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根,以及對根與系數(shù)的關(guān)系的理解,了解一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,則∠BED的度數(shù)為______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
![]()
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(給出定義)
數(shù)軸上順次有三點(diǎn)A、C、B,若點(diǎn)C到點(diǎn)A的距離是點(diǎn)C到點(diǎn)B的距離的3倍,我們就稱點(diǎn)C是(A、B)的“夢想點(diǎn)”例如:圖①中,點(diǎn)A、B表示的數(shù)分別為-2、2,表示數(shù)1的點(diǎn)C是(A、B)的“夢想點(diǎn)”;圖②中,點(diǎn)A、B表示對的數(shù)分別為-2、2,表示-1的點(diǎn)C是(B、A)的“夢想點(diǎn).
![]()
(解決問題)
(1)若數(shù)軸上M、N兩點(diǎn)所表示的數(shù)分別為
且
滿足
求出(M、N)的“夢想點(diǎn)”表示的數(shù);
(2)如圖③,在數(shù)軸上點(diǎn)A、B表示的數(shù)分別為-15和65,點(diǎn)P從點(diǎn)A出發(fā)沿數(shù)軸向右運(yùn)動:
①若點(diǎn)P運(yùn)動到點(diǎn)B停止,則當(dāng)P、A、B中恰好有一個點(diǎn)為其余兩個點(diǎn)的“夢想點(diǎn)”時,求這個點(diǎn)表示的數(shù);
②若點(diǎn)P運(yùn)動到B后,繼續(xù)沿數(shù)軸向右運(yùn)動的過程中,是否還存在點(diǎn)P、A、B中恰好有一個點(diǎn)為其余兩點(diǎn)的“夢想點(diǎn)”的情況?若存在,請直接寫出此時以PA、PB為鄰邊長的長方形的周長;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,AD=AC,在AC上截取AE=AB,連接DE、BE,并延長BE交CD于點(diǎn) F,以下結(jié)論:①△BAC≌△EAD;②∠ABE+∠ADE=∠BCD;③BC+CF=DE+EF;其中正確的有( )個
![]()
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.
(1)求∠AOC的度數(shù);
(2)作射線OG⊥OE,試求出∠AOG的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過點(diǎn)D。![]()
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外圴相同.
(1)從箱子里任意摸出一個球是白球的概率是多少?
(2)從箱子里任意摸出一個球,不將它放回,攪均后再摸出一球,求兩次摸出的球都是白球的概率,并畫出樹狀圖.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com