【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當(dāng)?shù)囟林形?/span>12時太陽光線與水平面的夾角為30°.
(1)如果A、B兩樓相距16
米,那么A樓落在B樓上的影子有多長?
(2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應(yīng)是多少米?(結(jié)果保留根號)
![]()
【答案】(1)A樓落在B樓上的影子有14m.(2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應(yīng)是30
米.
【解析】
(1)利用銳角三角函數(shù)關(guān)系得出CE的長,進(jìn)而得出答案;
(2)可根據(jù)A樓,地面和光線正好構(gòu)成直角三角形,利用銳角三角函數(shù)關(guān)系求解.
解:(1)如圖,過D作DE⊥CG于E, ED=16
,∠CDE=30°,
![]()
∴CE=DEtan30°=16
×
=16(m),
故DF=EG=CG-CE=30-16=14(m),
答:A樓落在B樓上的影子有14m.
(2)延長CD交GF于點H,
當(dāng)A樓的影子剛好不落在B樓上,
則GH=
=
=30
(m),
答:如果A樓的影子剛好不落在B樓上,那么兩樓的距離應(yīng)是30
米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=50°,則∠BDE= °.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂北公司以10元/千克的價格收購一批產(chǎn)品進(jìn)行銷售,為了得到日銷售量y(千克)與銷售價格x(元/千克)之間的關(guān)系,經(jīng)過市場調(diào)查獲得部分?jǐn)?shù)據(jù)如表:
銷售價格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日銷售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)請你根據(jù)表中的數(shù)據(jù)確定y與x之間的函數(shù)表達(dá)式;
(2)鄂北公司應(yīng)該如何確定這批產(chǎn)品的銷售價格,才能使日銷售利潤W1元最大?
(3)若鄂北公司每銷售1千克這種產(chǎn)品需支出a元(a>0)的相關(guān)費用,當(dāng)20≤x≤25時,鄂北公司的日獲利W2元的最大值為1215元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有2個紅球,1個白球和1個藍(lán)球,這些球除顏色外都相同,小明和小凡準(zhǔn)備用這些球做游戲,游戲規(guī)則如下:從盒子中隨機摸出一個球,記下顏色后放回,再從中隨機摸出一個球,若兩次摸到的球的顏色都是紅色,小明勝;若兩次摸到的球的顏色能配成紫色,則小凡勝,這個游戲?qū)﹄p方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC,BD相交于點O,AB=3cm,BC=4cm,點E是BC上一點,且CE=1cm.點P由點C出發(fā),沿CD方向向點D勻速運動,速度為1cm/s;點Q由點A出發(fā),沿AD方向向點D勻速運動,速度為
cm/s,點P,Q同時出發(fā),PQ交BD于F,連接PE,QB,設(shè)運動時間為t(s)(0<t<3).
(1)當(dāng)t為何值時,PE∥BD?
(2)設(shè)△FQD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(3)是否存在某一時刻t,使得四邊形BQPE的周長最小.若存在,求出此四邊形BQPE的面積;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如(圖1),已知經(jīng)過原點的拋物線y=ax2+bx與x軸交于另一點A(
,0),在第一象限內(nèi)與直線y=x交于點B(2,t)
(1)求拋物線的解析式;
(2)在直線OB下方的拋物線上有一點C,點C到直線OB的距離為
,求點C的坐標(biāo);
(3)如(圖2),若點M在拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知在平面直角坐標(biāo)系
中,點
、
、
分別為坐標(biāo)軸上的三個點,且
,
,
.
![]()
(1)求經(jīng)過
、
、
三點的拋物線的解析式;
(2)點
是拋物線上一個動點,且在直線
的上方,連接
、
,并把
沿
翻折,得到四邊形
,那么是否存在點,使四邊形
為菱形?若存在,請求出此時點
的坐標(biāo);若不存在,請說明理由;
(3)如圖2,過拋物線頂點
作直線
軸,交
軸于點
,點
是拋物線上
、
兩點間的一個動點(點
不與
、
兩點重合),直線
、
與直線
分別交于點
、
,當(dāng)點
運動時,
是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
的半徑為 4,
是圓的直徑,點
是
的切線
上的一個動點,連接
交
于點
,弦
平行于
,連接
.
![]()
(1)試判斷直線
與
的位置關(guān)系,并說明理由;
(2)當(dāng)
__________時,四邊形
為菱形;
(3)當(dāng)
___________時,四邊形
為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為⊙O的直徑,過點A作AD平分∠BAC交⊙O于點D,過點D作BC的平行線分別交AC、AB的延長線于點E、F,DG⊥AB于點G,連接BD.
(1)求證:△AED∽△DGB;
(2)求證:EF是⊙O的切線;
(3)若
,OA=4,求劣弧
的長度(結(jié)果保留π).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com