【題目】如圖,已知直線y=
x與雙曲線y=
交于A、B兩點,且點A的橫坐標(biāo)為
.
(1)求k的值;
(2)若雙曲線y=
上點C的縱坐標(biāo)為3,求△AOC的面積;
(3)在坐標(biāo)軸上有一點M,在直線AB上有一點P,在雙曲線y=
上有一點N,若以O(shè)、M、P、N為頂點的四邊形是有一組對角為60°的菱形,請寫出所有滿足條件的點P的坐標(biāo).
![]()
【答案】(1)k=
(2)
(3)(1,
)或(﹣1,﹣
);(3,
)或(﹣3,﹣
)
【解析】
(1)先求的A點縱坐標(biāo),然后用待定系數(shù)法求解即可;
(2)先求出C點坐標(biāo),再用待定系數(shù)法求的直線AC的解析式,然后求得直線AC與x的交點坐標(biāo),再根據(jù)
求解即可;
(3)設(shè)
點坐標(biāo)
,根據(jù)題意用關(guān)于a的式子表示出N的坐標(biāo),再根據(jù)菱形的性質(zhì)得
,求出a的值即可.
把x=
代入
,得y=
,
∴A(
,1),
把點
代入
,解得:
;
∵把y=3代入函數(shù)
,得x=
,
∴C
,
設(shè)過
,
兩點的直線方程為:
,
把點
,
,代入得:
,
解得:
,
∴
,
設(shè)
與
軸交點為
,
則
點坐標(biāo)為
,
∴
;
設(shè)
點坐標(biāo)
,由直線
解析式可知,直線
與
軸正半軸夾角為
,
∵以
、
、
、
為頂點的四邊形是有一組對角為
的菱形,
在直線
上,
∴點
只能在
軸上,
∴
點的橫坐標(biāo)為
,代入
,解得縱坐標(biāo)為:
,
根據(jù)
,即得:
,
解得:
.
故
點坐標(biāo)為:
或
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有( )
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是三邊都不相等的三角形,點O和點P是這個三角形內(nèi)部兩點.
(1)如圖①,如果點P是這個三角形三個內(nèi)角平分線的交點,那么∠BPC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
(2)如圖②,如果點O是這個三角形三邊垂直平分線的交點,那么∠BOC和∠BAC有怎樣的數(shù)量關(guān)系?請說明理由;
(3)如圖③,如果點P(三角形三個內(nèi)角平分線的交點),點O(三角形三邊垂直平分線的交點)同時在不等邊△ABC的內(nèi)部,那么∠BPC和∠BOC有怎樣的數(shù)量關(guān)系?請直接回答.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場一品牌服裝,銷售一件可獲利
元,為在十一期間增加盈利,進(jìn)行促銷活動,決定采取降價措施.根據(jù)以往銷售經(jīng)驗及市場調(diào)查發(fā)現(xiàn),每件服裝降價
(元)與每天的銷售量
(件)之間的關(guān)系如下表
|
|
|
|
|
| … |
|
|
|
|
|
| … |
請你按照上表,求
與
之間的函數(shù)解析式.
為保證每天能盈利
元,又能吸引顧客,每件服裝應(yīng)降價多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有客房
間供游客居住,當(dāng)每間客房的定價為每天
元時,客房恰好全部住滿;如果每間客房每天的定價每增加
元,就會減少
間客房出租.設(shè)每間客房每天的定價增加
元,賓館出租的客房為
間.求:
關(guān)于
的函數(shù)關(guān)系式;
如果某天賓館客房收入
元,那么這天每間客房的價格是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個鋁質(zhì)的三角形框架的三邊長分別為24 cm,30 cm,36 cm,要做一個與它相似的鋁質(zhì)三角形的框架,現(xiàn)有長27 cm,45 cm的兩根鋁材,要求以其中的一根為邊,從另一根上截下兩段(允許有余材),則截法有______種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,E是AC上一點,連結(jié)EB.
(1) 如圖1,若點E在線段AC上,過點A作AM⊥BE,垂足為M,交BO于點F.求證:OE=OF;
(2)如圖2,若點E在AC的延長線上,AM⊥BE于點M,交OB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點P從點E出發(fā)沿EA方向運(yùn)動,連結(jié)PD,以PD為邊,在PD的右側(cè)按如圖所示的方式作等邊△DPF,當(dāng)點P從點E運(yùn)動到點A時,點F運(yùn)動的路徑長是________.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com