【題目】如圖,平面直角坐標(biāo)系中,A(﹣3,﹣2)、B(﹣1,﹣4)
(1)直接寫(xiě)出:S△OAB= ;
(2)延長(zhǎng)AB交y軸于P點(diǎn),求P點(diǎn)坐標(biāo);
(3)Q點(diǎn)在y軸上,以A、B、O、Q為頂點(diǎn)的四邊形面積為6,求Q點(diǎn)坐標(biāo).
![]()
【答案】(1)5;(2)(0,﹣5);(3) (0,
)或(0,﹣2).
【解析】試題解析:(1)延長(zhǎng)AB交y軸于P點(diǎn),如圖,利用待定系數(shù)法求出直線(xiàn)AB的解析式為y=-x-5,則得到P(0,-5),然后根據(jù)三角形面積公式和利用S△OAB=S△AOP-S△OBP進(jìn)行計(jì)算即可;
(2)由(1)得到P點(diǎn)的坐標(biāo);
(3)分類(lèi)討論:當(dāng)Q在y軸的正半軸上時(shí),利用S四邊形ABOQ=S△AOB+S△AOQ得到S△AOQ=1,再根據(jù)三角形面積公式求出OQ.從而得到Q點(diǎn)坐標(biāo);當(dāng)Q在y軸的負(fù)半軸上時(shí),利用S四邊形ABOQ=S△AOB+S△BOQ得到S△BOQ=1,再根據(jù)三角形面積公式求出OQ.從而得到Q點(diǎn)坐標(biāo).
試題解析:(1)延長(zhǎng)AB交y軸于P點(diǎn),如圖,
![]()
設(shè)直線(xiàn)AB的解析式為y=kx+b,
把A(﹣3,﹣2)、B(﹣1,﹣4)代入得![]()
解得
.
所以直線(xiàn)AB的解析式為y=﹣x﹣5,
當(dāng)x=0時(shí),y=﹣x﹣5=﹣5,則P(0,﹣5),
所以S△OAB=S△AOP﹣S△OBP
=
×5×3﹣
×5×1
=5.
(2)由(1)得到P點(diǎn)的坐標(biāo)為(0,﹣5);
(3)當(dāng)Q在y軸的正半軸上時(shí),∵S四邊形ABOQ=S△AOB+S△AOQ,
∴S△AOQ=6﹣5=1,
∴
×3×OQ=1,
解得OQ=
.
則此時(shí)Q點(diǎn)的坐標(biāo)為(0,
);
當(dāng)Q在y軸的負(fù)半軸上時(shí),
∵S四邊形ABOQ=S△AOB+S△BOQ,
∴S△BOQ=1,
∴S△AOQ=6﹣5=1,
∴
×1×OQ=1,
解得OQ=2,
則此時(shí)Q點(diǎn)的坐標(biāo)為(0,﹣2),
即Q點(diǎn)坐標(biāo)為(0,
)或(0,﹣2).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在
中,
于
,且
.
(
)求證:
.
(
)若
,
于
,
為
中點(diǎn),
與
,
分別交于點(diǎn)
,
.
①判斷線(xiàn)段
與
相等嗎?請(qǐng)說(shuō)明理由.
②求證:
.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t= 時(shí),CP把△ABC的周長(zhǎng)分成相等的兩部分?
(2)當(dāng)t= 時(shí),CP把△ABC的面積分成相等的兩部分?
(3)當(dāng)t為何值時(shí),△BCP的面積為12?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,CD=6cm,當(dāng)邊CD向右平移時(shí),長(zhǎng)方形的面積發(fā)生了變化.
(1)這個(gè)變化過(guò)程中,自變量、因變量各是什么?
(2)如果BC的長(zhǎng)為
cm,那么長(zhǎng)方形的面積
可以表為 .
(3)當(dāng)BC的長(zhǎng)從12cm增加到20cm時(shí),長(zhǎng)方形的面積增加了多少?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)為2.5米長(zhǎng)的梯子AB斜靠在墻上,BE長(zhǎng)0.7米。
(1)求梯子上端到墻的底端E的距離(即AE的長(zhǎng));
(2)如果梯子的頂端A沿墻下滑0.4米(即AC=0.4米),則梯腳B將外移(即BD長(zhǎng))多少米?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如圖①,求證:DE∥BC;
(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
如圖,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如圖①,求證:DE∥BC;
(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)F. 已知AD=2cm,BC=5cm.
(1)求證:FC=AD;
(2)求AB的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)
的圖像如圖所示,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1 , A2 , A3 , …,A2008在y軸的正半軸上,點(diǎn)B1 , B2 , B3 , …,B2008在二次函數(shù)
位于第一象限的圖像上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長(zhǎng)=![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一天小明和冬冬利用溫差來(lái)測(cè)量山峰的高度.冬冬在山腳測(cè)得的溫度是4℃,小明此時(shí)在山頂測(cè)得的溫度是2℃,已知該地區(qū)高度每升高100米,氣溫下降0.8℃,問(wèn)這個(gè)山峰有多高?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com