【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=kx+5的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)y=2x的圖象l2與l1交于點(diǎn)C(m,4).
![]()
(1)求m的值及l1的解析式;
(2)求S△AOC﹣S△BOC的值.
【答案】(1)m=2,l1的解析式為y=﹣
x+5;(2)S△AOC﹣S△BOC=15.
【解析】
(1)先將點(diǎn)C的坐標(biāo)代入正比例函數(shù)即可求出m的值;再將點(diǎn)C的坐標(biāo)代入一次函數(shù)
可求出k的值,從而可得
的解析式;
(2)利用直線
的解析式求出點(diǎn)A和點(diǎn)B的坐標(biāo),則可得OA和OB的長,又因
的OA邊上的高為點(diǎn)C的縱坐標(biāo),
的OB邊上的高為點(diǎn)C的橫坐標(biāo),最后根據(jù)三角形的面積公式求解即可.
(1)把
代入
得
,解得![]()
則點(diǎn)C的坐標(biāo)為![]()
再把
代入
得
,解得![]()
則
的解析式為
;
(2)由題(1)得,直線
的解析式為![]()
則當(dāng)
時,
,解得
,則點(diǎn)A的坐標(biāo)為![]()
當(dāng)
時,
,則點(diǎn)B的坐標(biāo)為![]()
因
的OA邊上的高為點(diǎn)C的縱坐標(biāo),
的OB邊上的高為點(diǎn)C的橫坐標(biāo)
故
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線
與
軸負(fù)半軸交于點(diǎn)
,與
軸交于點(diǎn)
,
(
點(diǎn)在
點(diǎn)的右側(cè)),點(diǎn)
是拋物線上對稱軸上的一動點(diǎn),且
的面積為
.
(1)求
的值;
(2)
的面積為
,直接寫出
點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD=AE,BE=CD,∠ADB=∠AEC=110°,∠BAE=80°,下列說法:①△ABE≌△ACD;②△ABD≌△ACE;③∠DAE=40°;④∠C=40°.其中正確的說法有( )
![]()
A.3個B.2個C.1個D.0個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè)
,
.
①如圖2,當(dāng)點(diǎn)在線段BC上移動,則
,
之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點(diǎn)在直線BC上移動,則
,
之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
的圖象相交于A、B兩點(diǎn),A點(diǎn)坐標(biāo)是(﹣2,1),B點(diǎn)坐標(biāo)(1,n);
(1)求出k,b,m,n的值;
(2)求△AOB的面積;
(3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值的x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,
,
,點(diǎn)
為
上一動點(diǎn),把
沿
折疊,當(dāng)點(diǎn)
的對應(yīng)點(diǎn)
落在
的角平分線上時,則點(diǎn)
到
的距離為( ).
![]()
A.
或
B.
或
C.
或
D.
或![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,以
為直徑的⊙
交
于點(diǎn)
,過點(diǎn)
作
于點(diǎn)
,且
.
(
)判斷
與⊙
的位置關(guān)系并說明理由;
(
)若
,
,求⊙
的半徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m+2)x2+kx+n.
(1)若此函數(shù)為一次函數(shù);①m,k,n的取值范圍;②當(dāng)﹣2≤x≤1時,0≤y≤3,求此函數(shù)關(guān)系式;
(2)若m=﹣1,n=2,當(dāng)﹣2≤x≤2時,此函數(shù)有最小值﹣4,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,過點(diǎn)B作BD⊥AC,垂足為D,若D是邊AC的中點(diǎn),
(1)求證:△ABC是等邊三角形;
(2)在線段BD上求作點(diǎn)E,使得CE=2DE(要求:尺規(guī)作圖,不寫畫法,保留作圖痕跡)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com