解:(1)①∠MON=

∠AOC+

∠BOD=45°.
②當α=90°時,
∠MON=180°-(

∠AOC+

∠BOD)
=180°-[

(∠AOB+∠BOC)+

(∠COD+∠BOC)]
=180°-[

(60°+90°)+

(30°+90°)]
=45°.
③當α=140°時,
∵∠AOD=360°-60°-30°-140°=130°,
∴∠MON=

∠AOC+

∠BOD-∠COD
=

(∠AOD+∠DOC)+

(∠BOC+∠COD)-∠COD
=

(∠AOD+∠BOC)
=

(360°-90°)

=135°;
(2)當∠AOB=β,∠COD=γ(β>γ)時,∠AOB與∠COD互余,則β+γ=90°,
當如圖1所示:∠MON=

∠AOC+

∠BOD=

(β+γ)=45°,
如圖3所示:
∠MON=

∠AOC+

∠BOD-∠COD
=

(∠AOD+∠DOC)+

(∠BOC+∠COD)-∠COD
=

(∠AOD+∠BOC)
=

(360°-∠AOB-∠COD)
=

(360°-90°)
=135°,
則∠MON=135°或45°.
故答案為:135°或45°.
分析:(1)先根據角平分線的定義得出∠MOB=

∠AOB,∠BON=

∠BOD,再根據∠MON=∠MOB+∠BON即可求解;
(2)由特殊到一般可求∠MON的度數即可.
點評:本題主要考查了學生在學習過程中對角度關系及運算的靈活運用和掌握.此類題目的練習有利于學生更好的對角的理解.