【題目】在
,
,
.點(diǎn)P是平面內(nèi)不與點(diǎn)A,C重合的任意一點(diǎn).連接AP,將線段AP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α得到線段DP,連接AD,BD,CP.
(1)觀察猜想
如圖1,當(dāng)
時(shí),
的值是 ,直線BD與直線CP相交所成的較小角的度數(shù)是 .
(2)類比探究
如圖2,當(dāng)
時(shí),請寫出
的值及直線BD與直線CP相交所成的小角的度數(shù),并就圖2的情形說明理由.
(3)解決問題
當(dāng)
時(shí),若點(diǎn)E,F分別是CA,CB的中點(diǎn),點(diǎn)P在直線EF上,請直接寫出點(diǎn)C,P,D在同一直線上時(shí)
的值.
![]()
【答案】(1)1,
(2)45°(3)
,![]()
【解析】
(1)如圖1中,延長CP交BD的延長線于E,設(shè)AB交EC于點(diǎn)O.證明
,即可解決問題.
(2)如圖2中,設(shè)BD交AC于點(diǎn)O,BD交PC于點(diǎn)E.證明
,即可解決問題.
(3)分兩種情形:①如圖3﹣1中,當(dāng)點(diǎn)D在線段PC上時(shí),延長AD交BC的延長線于H.證明
即可解決問題.
②如圖3﹣2中,當(dāng)點(diǎn)P在線段CD上時(shí),同法可證:
解決問題.
解:(1)如圖1中,延長CP交BD的延長線于E,設(shè)AB交EC于點(diǎn)O.
![]()
,
,
,
,
,
,
,
,
,
,線BD與直線CP相交所成的較小角的度數(shù)是
,
故答案為1,
.
(2)如圖2中,設(shè)BD交AC于點(diǎn)O,BD交PC于點(diǎn)E.
![]()
,
,
,
,
,
,
,
,
直線BD與直線CP相交所成的小角的度數(shù)為
.
(3)如圖3﹣1中,當(dāng)點(diǎn)D在線段PC上時(shí),延長AD交BC的延長線于H.
![]()
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
A,D,C,B四點(diǎn)共圓,
,
,
,
,設(shè)
,則
,
,
c.
如圖3﹣2中,當(dāng)點(diǎn)P在線段CD上時(shí),同法可證:
,設(shè)
,則
,
,
![]()
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,
,將點(diǎn)C關(guān)于直線AB對稱得到點(diǎn)D,作射線BD與CA的延長線交于點(diǎn)E,在CB的延長線上取點(diǎn)F,使得BF=DE,連接AF.
![]()
備用圖
(1)依題意補(bǔ)全圖形;
(2)求證:AF=AE;
(3)作BA的延長線與FD的延長線交于點(diǎn)P,寫出一個(gè)∠ACB的值,使得AP=AF成立,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,
,
,
是線段
上的一個(gè)動(dòng)點(diǎn),以
為直徑作
分別交
、
于
、
,連接
,當(dāng)線段
長度取最小值時(shí),
______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,BD⊥AC,垂足為E,點(diǎn)F在BD的延長線上,且DF=DC,連接AF、CF.
(1)求證:∠BAC=2∠DAC;
(2)若AF=10,BC=4
,求tan∠BAD的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知Rt△ABC中,∠C=90°,點(diǎn)D在BC上,且CD=2,連接AD將Rt△ACD沿射線CB方向平移,得到Rt△A'C'D',C'到達(dá)B點(diǎn)時(shí),停止平移,設(shè)平移距離為x,△A'C'D'與△ABC重合面積為S,且x與S的函數(shù)關(guān)系式如圖2所示,(0<x≤6,與6<x≤n所對應(yīng)的解析式不同).
(1)m= ,n= .
(2)寫出S與x的函數(shù)關(guān)系式,直接寫出x對應(yīng)的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進(jìn),廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計(jì),目前廣東5G基站的數(shù)量約1.5萬座,計(jì)劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達(dá)到17.34萬座。
(1)計(jì)劃到2020年底,全省5G基站的數(shù)量是多少萬座?;
(2)按照計(jì)劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:如圖1,在等邊△ABC中,AB=12,⊙C半徑為6,P為圓上一動(dòng)點(diǎn),連結(jié)AP,BP,求AP+
BP的最小值.
![]()
(1)嘗試解決:為了解決這個(gè)問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點(diǎn)D,使CD=3,則有
=
=
,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴
=
,∴PD=
BP,∴AP+
BP=AP+PD.請你完成余下的思考,并直接寫出答案:AP+
BP的最小值為.
(2)自主探索:如圖1,矩形ABCD中,BC=7,AB=9,P為矩形內(nèi)部一點(diǎn),且PB=3,
AP+PC的最小值為.
(3)拓展延伸:如圖2,扇形COD中,O為圓心,∠COD=120°,OC=4,OA=2,OB=3,點(diǎn)P是
上一點(diǎn),求2PA+PB的最小值,畫出示意圖并寫出求解過程.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是△ABC的中線,且∠DAC=∠B,CD=CE.
![]()
(1)求證:
;
(2)若AB=15,BC=10,試求AC與AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)
的圖象為C1.二次函數(shù)
的圖象與C1關(guān)于y軸對稱.
![]()
(1)求二次函數(shù)
的解析式;
(2)當(dāng)
≤0時(shí),直接寫出
的取值范圍;
(3)設(shè)二次函數(shù)
圖象的頂點(diǎn)為點(diǎn)A,與y軸的交點(diǎn)為點(diǎn)B,一次函數(shù)
( k,m為常數(shù),k≠0)的圖象經(jīng)過A,B兩點(diǎn),當(dāng)
時(shí),直接寫出x的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com