【題目】如圖,△ABC,AB=AC=10,BC=16.
(1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫作法,但要保留作圖痕跡)
(2)求OA的長.
![]()
【答案】(1)見解析;(2)OA=![]()
.
【解析】
(1)可按尺規(guī)作圖的方法進(jìn)行作圖.(作其中兩條邊的垂直平分線,以此交點(diǎn)為圓心,圓心到三角形任何一頂點(diǎn)的距離為半徑作圓);
(2)可通過構(gòu)建直角三角形來求解.連接OA,OC,OA⊥BC.先在三角形ACD中求出AD的值,然后在三角形ODC中,用半徑表示OD,OC,根據(jù)勾股定理求出半徑.
解:(1)如圖,點(diǎn)O即為所求的點(diǎn).
![]()
(2)連接OA交BC于D,連接OC.
因?yàn)?/span>AB=AC,
所以由垂徑定理,得OA⊥BC于D,BD=CD=8.
在Rt△ADC中,AD=
.
設(shè)OC=OA=R,則OD=R﹣6.
在Rt△OCD中,由OC2=OD2+CD2,
得R2=(R﹣6)2+82,解得R=
,
∴OA=
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校教職工為慶祝“建國70周年”開展學(xué)習(xí)強(qiáng)國知識競賽,本次知識競賽分為甲、乙、丙三組進(jìn)行,下面兩幅統(tǒng)計(jì)圖反映了教師參加學(xué)習(xí)強(qiáng)國知識競賽的報(bào)名情況,請你根據(jù)圖中的信息回答下列問題:
報(bào)名人數(shù)分布直方圖 報(bào)名人數(shù)扇形分布圖
![]()
![]()
(1)該校教師報(bào)名參加本次學(xué)習(xí)強(qiáng)國知識競賽的總?cè)藬?shù)為 人,并補(bǔ)全頻數(shù)分布直方圖;
(2)該校教師報(bào)名參加丙組的人數(shù)所占圓心角度數(shù)是 ;
(3)根據(jù)實(shí)際情況,需從甲組抽調(diào)部分教師到丙組,使丙組人數(shù)是甲組人數(shù)的3倍,應(yīng)從甲組抽調(diào)多少名教師到丙組?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中,已知
,
,將
繞著點(diǎn)A逆時針旋轉(zhuǎn)
,記點(diǎn)C的對應(yīng)點(diǎn)為點(diǎn)D,AD、BC的延長線相交于點(diǎn)E.如果線段DE的長為
,那么邊AB的長為___.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的點(diǎn)A′處,若AO=OB=2,則陰影部分面積為( )
![]()
A. πB.
π﹣1C.
+1D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為
,
,
,
,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為
.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為
,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( )
![]()
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+mx+n的圖象經(jīng)過點(diǎn)(﹣3,0),點(diǎn)(1,0)
(1)求拋物線解析式;(2)求拋物線的對稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)E,在CD的延長線上取一點(diǎn)P,PG與⊙O相切于點(diǎn)G,連接AG交CD于點(diǎn)F.
![]()
(Ⅰ)如圖①,若∠A=20°,求∠GFP和∠AGP的大小;
(Ⅱ)如圖②,若E為半徑OA的中點(diǎn),DG∥AB,且OA=2
,求PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
嘗試探究
如圖-
,在△ABC中,∠C=90°,∠A=30°,點(diǎn)E、F分別是BC、AC邊上的點(diǎn),且EF//BC.
的值為 ;
直線
與直線
的位置關(guān)系為 ;
類比延伸
如圖
,若將圖
中的
繞點(diǎn)
順時針旋轉(zhuǎn),連接
,則在旋轉(zhuǎn)的過程中,請判斷
的值及直線
與直
線的位置關(guān)系,并說明理由;
拓展運(yùn)用
若
,在旋轉(zhuǎn)過程中,當(dāng)
三點(diǎn)在同一直線上時,請直接寫出此時線段
的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(12,0),B(0,16),點(diǎn)C從B點(diǎn)出發(fā)向y軸負(fù)方向以每秒2個單位的速度運(yùn)動,過點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為x軸上一動點(diǎn),連結(jié)CD,DE,以CD,DE為邊作□CDEF.設(shè)運(yùn)動時間為t秒.
(1)求點(diǎn)C運(yùn)動了多少秒.時,點(diǎn)E恰好是AB的中點(diǎn)?
(2)當(dāng)t=4時,若□CDEF的頂點(diǎn)F恰好落在y軸上,請求出此時點(diǎn)D的坐標(biāo);
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com