【題目】如圖,ABCD的頂點A、B的坐標分別是A(﹣1,0),B(0,﹣2),頂點C、D在雙曲線y=
上,邊AD交y軸于點E,且四邊形BCDE的面積是△ABE面積的5倍,則k= . ![]()
【答案】12
【解析】解:如圖,過C、D兩點作x軸的垂線,垂足為F、G,DG交BC于M點,過C點作CH⊥DG,垂足為H,
![]()
∵ABCD是平行四邊形,
∴∠ABC=∠ADC,
∵BO∥DG,
∴∠OBC=∠GDE,
∴∠HDC=∠ABO,
∴△CDH≌△ABO(AAS),
∴CH=AO=1,DH=OB=2,設C(m+1,n),D(m,n+2),
則(m+1)n=m(n+2)=k,
解得n=2m,則D的坐標是(m,2m+2),
設直線AD解析式為y=ax+b,將A、D兩點坐標代入得
,
由①得:a=b,代入②得:mb+b=2m+2,
即b(m+1)=2(m+1),解得b=2,
則
,
∴y=2x+2,E(0,2),BE=4,
∴S△ABE=
×BE×AO=2,
∵S四邊形BCDE=5S△ABE=5×
×4×1=10,
∵S四邊形BCDE=S△ABE+S四邊形BEDM=10,
即2+4×m=10,
解得m=2,
∴n=2m=4,
∴k=(m+1)n=3×4=12.
所以答案是:12.
【考點精析】掌握確定一次函數的表達式和比例系數k的幾何意義是解答本題的根本,需要知道確定一個一次函數,需要確定一次函數定義式y=kx+b(k不等于0)中的常數k和b.解這類問題的一般方法是待定系數法;幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線相交于點A1,得∠A1;∠A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;∠A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019=________度.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,B兩點在反比例函數y=
的圖象上,C,D兩點在反比例函數y=
的圖象上,AC⊥y軸于點E,BD⊥y軸于點F,AC=2,BD=1,EF=3,則k1﹣k2的值是( ) ![]()
A.6
B.4
C.3
D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有大小兩種貨車,已知1輛大貨車與3輛小貨車一次可以運貨14噸,2輛大貨車與5輛小貨車一次可以運貨25噸.
(1)1輛大貨車與1輛小貨車一次可以運貨各多少噸?
(2)1輛大貨車一次費用為300元,1輛小貨車一次費用為200元,要求兩種貨車共用10輛,兩次完成80噸的運貨任務,且總費用不超過5400元,有哪幾種用車方案?請指出費用最低的一種方案,并求出相應的費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于x的方程x2+(2k+1)x+k2+2=0有兩個實數根x1,x2.
(1)求實數k的取值范圍;
(2)若x1,x2滿足|x1|+|x2|=|x1x2|-1,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個問題;△ABC中,有兩個內角相等.
①若∠A=110°,求∠B的度數;
②若∠A=40°,求∠B的度數.
小明通過探究發現,∠A的度數不同,∠B的度數的個數也可能不同,因此為同學們提供了如下解題的想法:
對于問題①,根據三角形內角和定理,∵∠A=110°>90°,∠B=∠C=35°;
對于問題②,根據三角形內角和定理,∵∠A=40°<90°,∴∠A=∠B或∠A=∠C或∠B=∠C,∴∠B的度數可求.請回答:
(1)問題②中∠B的度數為 ;
(2)參考小明解決問題的思路,解決下面問題:
△ABC中,有兩個內角相等.設∠A=x°,當∠B有三個不同的度數時,求∠B的度數(用含x的代式表示)以及x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A、B,C三點的坐標分別為(0,1)、(3,3)、(4,0).
![]()
(I)S△AOC= ;
(2)若點P(m﹣1,1)是第二象限內一點,且△AOP的面積不大于△ABC的面積,求m的取值范圍;
(3)若將線段AB向左平移1個單位長度,點D為x軸上一點,點E(4,n)為第一象限內一動點,連BE、CE、AC,若△ABD的面積等于由AB、BE、CE、AC四條線段圍成圖形的面積,則點D的坐標為 .(用含n的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD∥BC,FC⊥CD,∠1=∠2,∠B=60°.
![]()
(1)求∠BCF的度數;(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com