【題目】如圖,△ABC是等邊三角形,AB=
,點D是邊BC上一點,點H是線段AD上一點,連接BH、CH.當∠BHD=60°,∠AHC=90°時,DH=_____.
![]()
【答案】![]()
【解析】如圖,作AE⊥BH于E,BF⊥AH于F,利用等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再證明∠ABH=∠CAH,則可根據(jù)“AAS”證明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三邊的關(guān)系得到HE=
AH,AE=
AH,則CH=
AH,于是在Rt△AHC中利用勾股定理可計算出AH=2,從而得到BE=2,HE=1,AE=CH=
,BH=1,接下來在Rt△BFH中計算出HF=
,BF=
,然后證明△CHD∽△BFD,利用相似比得到
=2,從而利用比例性質(zhì)可得到DH的長.
作AE⊥BH于E,BF⊥AH于F,如圖,
∵△ABC是等邊三角形,
∴AB=AC,∠BAC=60°,
∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,
∴∠ABH=∠CAH,
在△ABE和△CAH中
,
∴△ABE≌△CAH,
∴BE=AH,AE=CH,
在Rt△AHE中,∠AHE=∠BHD=60°,
∴sin∠AHE=
,HE=
AH,
∴AE=AHsin60°=
AH,
∴CH=
AH,
在Rt△AHC中,AH2+(
AH)2=AC2=(
)2,解得AH=2,
∴BE=2,HE=1,AE=CH=
,
∴BH=BE﹣HE=2﹣1=1,
在Rt△BFH中,HF=
BH=
,BF=
,
∵BF∥CH,
∴△CHD∽△BFD,
∴
=2,
∴DH=
HF=
×
=
,
故答案為:
.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P為某個封閉圖形邊界上的一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設(shè)點M的運動時間為x,線段PM的長度為y,表示y與x的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=
x2+bx+c與直線y=
x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對稱軸l上找一點M,使|MB﹣MD|的值最大,并求出這個最大值;
(3)點P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ABC相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求
(1)∠BAE的度數(shù).
(2)∠DAE的度數(shù).
(3)探究:有的同學(xué)認為無論∠B、∠C的度數(shù)是多少,都有∠DAE=![]()
(∠B-∠C)成立,你同意嗎?并說出成立或不成立的理由.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,則不一定能使△ABD≌△ACD的條件是 ( )
![]()
A. AB=AC B. BD=CD C. ∠B=∠C D. ∠BDA=∠CDA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是O的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.
(1)若∠ADE=25°,求∠C的度數(shù);
(2)若AB=AC,CE=2,求⊙O半徑的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+(a﹣2)x+3的圖象與一次函數(shù)y=x(1≤x≤2)的圖象有且僅有一個交點,則實數(shù)a的取值范圍是( 。
A. a=3±2
B. ﹣1≤a<2
C. a=3
或﹣
≤a<2 D. a=3﹣2
或﹣1≤a<﹣![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A、O、B依次在直線MN上,現(xiàn)將射線OA繞點O沿順時針方向以每秒4°的速度旋轉(zhuǎn),同時射線OB繞點O沿逆時針方向以每秒6°的速度旋轉(zhuǎn),直線MN保持不動,如圖2,設(shè)旋轉(zhuǎn)時間為t(0≤t≤60,單位:秒).
![]()
(1)當t=3時,求∠AOB的度數(shù);
(2)在運動過程中,當∠AOB第二次達到72°時,求t的值;
(3)在旋轉(zhuǎn)過程中是否存在這樣的t,使得射線OB與射線OA垂直?如果存在,請求出t的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=
(k>0)在第一象限的圖象經(jīng)過A、C兩點,點C是AB的中點,若△OAB的面積為6,則k的值為_____.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com