題目列表(包括答案和解析)
如圖,三棱錐
中,側面
底面
,
,且
,
.(Ⅰ)求證:
平面
;
(Ⅱ)若
為側棱PB的中點,求直線AE與底面
所成角的正弦值.
![]()
【解析】第一問中,利用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
![]()
解
(Ⅰ) 證明:由用由
知,
,
又AP=PC=2,所以AC=2
,
又AB=4, BC=2
,,所以
,所以
,即
,
又平面
平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以![]()
………………………………………………6分
(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,
因為PA=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,
又EH//PO,所以EH平面
ABC ,
則
為直線AE與底面ABC 所成角,
且
………………………………………10分
又PO=1/2AC=
,也所以有EH=1/2PO=
,
由(Ⅰ)已證
平面PBC,所以
,即
,
故
,
于是![]()
所以直線AE與底面ABC 所成角的正弦值為![]()
![]()
設點
是拋物線![]()
![]()
的焦點,
是拋物線
上的
個不同的點(![]()
).
(1) 當
時,試寫出拋物線
上的三個定點
、
、
的坐標,從而使得
;
(2)當
時,若
,
求證:
;
(3) 當
時,某同學對(2)的逆命題,即:
“若
,則
.”
開展了研究并發現其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數
,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線
的焦點為
,設
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.
由拋物線定義得到
第二問設
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
第三問中①取
時,拋物線
的焦點為
,
設
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;![]()
解:(1)拋物線
的焦點為
,設
,
分別過
作拋物線
的準線
的垂線,垂足分別為
.由拋物線定義得
![]()
![]()
因為
,所以
,
故可取![]()
![]()
滿足條件.
(2)設
,分別過
作拋物線
的準線
垂線,垂足分別為
.
由拋物線定義得
![]()
![]()
又因為![]()
![]()
![]()
![]()
;
所以![]()
![]()
.
(3) ①取
時,拋物線
的焦點為
,
設
,
分別過![]()
作拋物線
的準線
垂線,垂足分別為![]()
.由拋物線定義得
![]()
![]()
![]()
![]()
,
則
,不妨取
;![]()
;![]()
;
,
則![]()
![]()
,![]()
![]()
.
故
,
,
,
是一個當
時,該逆命題的一個反例.(反例不唯一)
② 設
,分別過
作
拋物線
的準線
的垂線,垂足分別為
,
由
及拋物線的定義得
,即
.
因為上述表達式與點
的縱坐標無關,所以只要將這
點都取在
軸的上方,則它們的縱坐標都大于零,則
![]()
![]()
![]()
![]()
![]()
![]()
,
而
,所以
.
(說明:本質上只需構造滿足條件且
的一組
個不同的點,均為反例.)
③ 補充條件1:“點
的縱坐標
(
)滿足
”,即:
“當
時,若
,且點
的縱坐標
(
)滿足
,則
”.此命題為真.事實上,設
,
分別過
作拋物線
準線
的垂線,垂足分別為
,由
,
及拋物線的定義得
,即
,則
![]()
![]()
![]()
![]()
![]()
![]()
,
又由
,所以
,故命題為真.
補充條件2:“點
與點![]()
為偶數,
關于
軸對稱”,即:
“當
時,若
,且點
與點![]()
為偶數,
關于
軸對稱,則
”.此命題為真.(證略)
如圖所示,圓柱的高為2,底面半徑為
,AE、DF是圓柱的兩條母線,過
作圓柱的截面交下底面于
.![]()
(1)求證:
;
(2)若四邊形ABCD是正方形,求證
;
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數值。
![]()
【解析】第一問中,利用由圓柱的性質知:AD平行平面BCFE
又過
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF
第二問中,由線面垂直得到線線垂直。四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內兩條相交直線
![]()
![]()
第三問中,設正方形ABCD的邊長為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
證明:(1)由圓柱的性質知:AD平行平面BCFE
又過
作圓柱的截面交下底面于
.
∥
又AE、DF是圓柱的兩條母線
∥DF,且AE=DF
AD∥EF![]()
(2)
四邊形ABCD是正方形![]()
又![]()
BC、AE是平面ABE內兩條相交直線
![]()
![]()
(3)設正方形ABCD的邊長為x,則在![]()
在![]()
由(2)可知:
為二面角A-BC-E的平面角,所以![]()
已知數列
是首項為
的等比數列,且滿足![]()
.
(1) 求常數
的值和數列
的通項公式;
(2) 若抽去數列
中的第一項、第四項、第七項、……、第
項、……,余下的項按原來的順序組成一個新的數列
,試寫出數列
的通項公式;
(3) 在(2)的條件下,設數列
的前
項和為
.是否存在正整數
,使得
?若存在,試求所有滿足條件的正整數
的值;若不存在,請說明理由.
【解析】第一問中解:由
得
,,
又因為存在常數p使得數列
為等比數列,
則
即
,所以p=1
故數列
為首項是2,公比為2的等比數列,即
.
此時
也滿足,則所求常數
的值為1且![]()
第二問中,解:由等比數列的性質得:
(i)當
時,
;
(ii) 當
時,
,
所以![]()
第三問假設存在正整數n滿足條件,則
,
則(i)當
時,
![]()
,
如圖,
,
,…,
,…是曲線
上的點,
,
,…,
,…是
軸正半軸上的點,且
,
,…,
,…
均為斜邊在
軸上的等腰直角三角形(
為坐標原點).
(1)寫出
、
和
之間的等量關系,以及
、
和
之間的等量關系;
(2)求證:
(
);
(3)設
,對所有
,
恒成立,求實數
的取值范圍.
![]()
【解析】第一問利用有
,
得到
第二問證明:①當
時,可求得
,命題成立;②假設當
時,命題成立,即有
則當
時,由歸納假設及
,
得![]()
第三問
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
![]()
解:(1)依題意,有
,
,………………4分
(2)證明:①當
時,可求得
,命題成立;
……………2分
②假設當
時,命題成立,即有
,……………………1分
則當
時,由歸納假設及
,
得
.
即![]()
解得
(
不合題意,舍去)
即當
時,命題成立. …………………………………………4分
綜上所述,對所有
,
. ……………………………1分
(3)
![]()
.………………………2分
因為函數
在區間
上單調遞增,所以當
時,
最大為
,即
.……………2分
由題意,有![]()
.
所以,![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com