題目列表(包括答案和解析)
| x2 |
| a2 |
| y2 |
| b2 |
| 10 |
| 3 |
| P |
| P |
(本小題滿分14分)已知點F橢圓E:
的右焦點,點M在橢圓E上,以M為圓心的圓與x軸切于點F,與y軸交于A、B兩點,且
是邊長為2的正三角形;又橢圓E上的P、Q兩點關于直線
對稱.
(1)求橢圓E的方程;(2)當直線
過點(
)時,求直線PQ的方程;
(3)若點C是直線
上一點,且
=
,求
面積的最大值.
![]()
1-10.CDBBA CACBD
11.
12. ①③④ 13.-2或1 14.
、
15.2 16.
17.
.
18.
解:(1)由已知
7分
(2)由
10分
由余弦定理得
14分
19.(1)證明:∵PA⊥底面ABCD,BC
平面AC,∴PA⊥BC, 3分
∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC. 5分
(2)解:過C作CE⊥AB于E,連接PE,
∵PA⊥底面ABCD,∴CE⊥面PAB,
∴直線PC與平面PAB所成的角為
, 10分
∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,
中求得CE=
,∴
. 14分
20.解:(1)由
①,得
②,
②-①得:
. 4分
(2)由
求得
. 7分
∴
,
11分

∴
.
14分
21.解:
(1)由
得c=1 1分
, 4分