題目列表(包括答案和解析)
設(shè)函數(shù)
.
(Ⅰ) 當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(Ⅱ) 若
在
上的最大值為
,求
的值.
【解析】第一問(wèn)中利用函數(shù)
的定義域?yàn)椋?,2),
.
當(dāng)a=1時(shí),
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
第二問(wèn)中,利用當(dāng)
時(shí),
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
解:函數(shù)
的定義域?yàn)椋?,2),
.
(1)當(dāng)
時(shí),
所以
的單調(diào)遞增區(qū)間為(0,
),單調(diào)遞減區(qū)間為(
,2);
(2)當(dāng)
時(shí),
>0, 即
在
上單調(diào)遞增,故
在
上的最大值為f(1)=a 因此a=1/2.
已知函數(shù)
=
.
(Ⅰ)當(dāng)
時(shí),求不等式
≥3的解集;
(Ⅱ) 若
≤
的解集包含
,求
的取值范圍.
【命題意圖】本題主要考查含絕對(duì)值不等式的解法,是簡(jiǎn)單題.
【解析】(Ⅰ)當(dāng)
時(shí),
=
,
當(dāng)
≤2時(shí),由
≥3得
,解得
≤1;
當(dāng)2<
<3時(shí),
≥3,無(wú)解;
當(dāng)
≥3時(shí),由
≥3得
≥3,解得
≥8,
∴
≥3的解集為{
|
≤1或
≥8};
(Ⅱ)
≤![]()
![]()
,
當(dāng)
∈[1,2]時(shí),
=
=2,
∴
,有條件得
且
,即
,
故滿(mǎn)足條件的
的取值范圍為[-3,0]
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com