題目列表(包括答案和解析)
已知數(shù)列
是等比數(shù)列,
,如果
是關(guān)于
的方程:
的兩個實根,(
是自然對數(shù)的底數(shù))
(1)求
的通項公式;
(2)設(shè):
是數(shù)列
的前
項的和,當
時,求
的值;
(3)對于(Ⅱ)中的
,設(shè)
,而
是數(shù)列
的前項的和,求
的最大值,及相應(yīng)的
的值。
已知點
為圓
上的動點,且
不在
軸上,
軸,垂足為
,線段
中點
的軌跡為曲線
,過定點![]()
任作一條與
軸不垂直的直線
,它與曲線
交于
、
兩點。
(I)求曲線
的方程;
(II)試證明:在
軸上存在定點
,使得
總能被
軸平分
【解析】第一問中設(shè)
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為![]()
第二問中,設(shè)點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得 ![]()
∵
,∴![]()
確定結(jié)論直線
與曲線
總有兩個公共點.
然后設(shè)點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
得到。
(1)設(shè)
為曲線
上的任意一點,則點
在圓
上,
∴
,曲線
的方程為
. ………………2分
(2)設(shè)點
的坐標為
,直線
的方程為
, ………………3分
代入曲線
的方程
,可得
,……5分
∵
,∴
,
∴直線
與曲線
總有兩個公共點.(也可根據(jù)點M在橢圓
的內(nèi)部得到此結(jié)論)
………………6分
設(shè)點
,
的坐標分別
,
,則
,
要使
被
軸平分,只要
,
………………9分
即
,
, ………………10分
也就是
,
,
即
,即只要
………………12分
當
時,(*)對任意的s都成立,從而
總能被
軸平分.
所以在x軸上存在定點
,使得
總能被
軸平分
若函數(shù)
在定義域內(nèi)存在區(qū)間
,滿足
在
上的值域為
,則稱這樣的函數(shù)
為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)
是否為“優(yōu)美函數(shù)”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數(shù)
為“優(yōu)美函數(shù)”,求實數(shù)
的取值范圍.
【解析】第一問中,利用定義,判定由題意得
,由
,所以![]()
第二問中, 由題意得方程
有兩實根
設(shè)
所以關(guān)于m的方程
在
有兩實根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個不同交點,從而得到t的范圍。
解(I)由題意得
,由
,所以
(6分)
(II)由題意得方程
有兩實根
設(shè)
所以關(guān)于m的方程
在
有兩實根,
即函數(shù)
與函數(shù)
的圖像在
上有兩個不同交點。
![]()
一、選擇題:本大題共10個小題,每小題5分,共50分.
題號
1
2
3
4
5
6
7
8
9
10
答案
C
B
C
D
C
B
A
D
B
A
二、填空題:本大題共4個小題,每小題4分,共16分.
11. 630 12. 2k 13.
14. ①②③
三、解答題:本大題共6個小題,每小題14分,共84分.
15.
(4分)
由題意得
16.
有分布列:

0
1
2
3
P




從而期望
17.(1)
又

(2) 


(3)DE//AB,
(4)設(shè)BB1的中點為F,連接EF、DF,則EF是DF在平面BB
因為BB

18.(1) 由題意得
(2) 
所以直線
的斜率為
令
,則直線
的斜率
,
19.(1)由韋達定理得


是首項為4,公差為2的等差數(shù)列。
(2)由(1)知
,則
原式左邊=
=
=右式。故原式成立。
20.令x=y=0,有
,令y=-x則
得
故(1)得證。
(2)在R上任取x1,x2且
,且
,
所以
在R上單調(diào)遞增;
(3)
由
得
;
由
得
;因為
,
所以
無解,即圓心到直線的距離大于或等于半徑2,只需
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com