題目列表(包括答案和解析)
已知中心在坐標(biāo)原點,焦點在
軸上的橢圓C;其長軸長等于4,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點
(0,1), 問是否存在直線
與橢圓
交于
兩點,且
?若存在,求出
的取值范圍,若不存在,請說明理由.
【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。
第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
第二問中,
假設(shè)存在這樣的直線
,設(shè)
,MN的中點為![]()
因為|ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得![]()
代入1,2式中得到范圍。
(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為
則由長軸長等于4,即2a=4,所以a=2.又
,所以
,
又由于
所求橢圓C的標(biāo)準(zhǔn)方程為![]()
(Ⅱ) 假設(shè)存在這樣的直線
,設(shè)
,MN的中點為![]()
因為|ME|=|NE|所以MN
EF所以![]()
(i)其中若
時,則K=0,顯然直線
符合題意;
(ii)下面僅考慮
情形:
由
,得,![]()
,得
……② ……………………9分
則
.
代入①式得,解得
………………………………………12分
代入②式得
,得
.
綜上(i)(ii)可知,存在這樣的直線
,其斜率k的取值范圍是![]()
| RP |
| RQ |
已知函數(shù)
,它的一個極值點是
.
(Ⅰ) 求
的值及
的值域;
(Ⅱ)設(shè)函數(shù)
,試求函數(shù)
的零點的個數(shù).
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com