【題目】已知函數
,
.
(1)若
,求
的最大值;
(2)當
時,求證:
.
科目:高中數學 來源: 題型:
【題目】已知拋物線
上一點
到焦點
的距離
,傾斜角為
的直線經過焦點
,且與拋物線交于兩點
、
.
(1)求拋物線的標準方程及準線方程;
(2)若
為銳角,作線段
的中垂線
交
軸于點
.證明:
為定值,并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
對定義在區間
上的函數
,若存在閉區間
和常數
,使得對任意的
都有
,且對任意的
都有
恒成立,則稱函數
為區間
上的“U型”函數。
(1)求證:函數
是
上的“U型”函數;
(2)設
是(1)中的“U型”函數,若不等式
對一切的
恒成立,求實數
的取值范圍;
(3)若函數
是區間
上的“U型”函數,求實數
和
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的年固定成本為250萬元,每生產
千件,需另投入成本
,當年產量不足80千件時,
(萬元);當年產量不小于80千件時,
(萬元),每件售價為0.05萬元,通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤
(萬元)關于年產量
(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】按照我國《機動車交通事故責任強制保險條例》規定,交強險是車主必須為機動車購買的險種,若普通7座以下私家車投保交強險第一年的費用(基準保費)統一為
元,在下一年續保時,實行的是保費浮動機制,保費與上一、二、三個年度車輛發生道路交通事故的情況相關聯,發生交通事故的次數越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
投保類型 | 浮動因素 | 浮動比率 |
| 上一個年度未發生有責任道路交通事故 | 下浮10% |
| 上兩個年度未發生有責任道路交通事故 | 下浮20% |
| 上三個及以上年度未發生有責任道路交通事故 | 下浮30% |
| 上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發生兩次及兩次以上有責任不涉及死亡的道路交通事故 | 上浮10% |
| 上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了研究某一品牌普通7座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續保時的情況,統計得到了下面的表格:
類型 |
|
|
|
|
| |
數量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)某家庭有一輛該品牌車且車齡剛滿三年,記
為該車在第四年續保時的費用,求
的分布列;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基準保費的車輛記為事故車.
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;
②假設購進一輛事故車虧損4000元,一輛非事故盈利8000元,若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4cosωxsin(ωx
)(ω>0)的最小正周期是π.
(1)求函數f(x)在區間(0,π)上的單調遞增區間;
(2)若f(x0)
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為
的函數
是奇函數
(Ⅰ)求
值;
(Ⅱ)判斷并證明該函數在定義域
上的單調性;
(Ⅲ)若對任意的
,不等式
恒成立,求實數
的取值范圍;
(Ⅳ)設關于
的函數
有零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①回歸直線
過樣本點中心(
,
)
②將一組數據中的每個數據都加上或減去同一個常數后,平均值不變
③將一組數據中的每個數據都加上或減去同一個常數后,方差不變
④在回歸方程
=4x+4中,變量x每增加一個單位時,y平均增加4個單位
其中錯誤命題的序號是( )
A.①B.②C.③D.④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com