【題目】在數(shù)列{an}中,a1=2,an+1=
(n∈N+),
(1)計(jì)算a2、a3、a4并由此猜想通項(xiàng)公式an;
(2)證明(1)中的猜想.
【答案】(1)
(2)見(jiàn)解析
【解析】試題分析(1)根據(jù)遞推關(guān)系式依次求a2、a3、a4,根據(jù)分子分母之間關(guān)系猜想通項(xiàng)公式an(2)利用數(shù)學(xué)歸納法證明,先證起始項(xiàng),再利用an+1=
及歸納假設(shè)證n=k+1情況
試題解析:(1)在數(shù)列{an}中,∵a1=2,an+1=
(n∈N*)
∴a1=2=
,a2=
=
,a3=
=
,a4=
=
,
∴可以猜想這個(gè)數(shù)列的通項(xiàng)公式是an=
.
(2)方法一:下面利用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),成立;
②假設(shè)當(dāng)n=k時(shí),ak=
.
則當(dāng)n=k+1(k∈N*)時(shí),ak+1=
=
=
,
因此當(dāng)n=k+1時(shí),命題成立.
綜上①②可知:n∈N*,an=
都成立,
方法二:∵an+1=
,
∴
=
=1+
,∴
﹣
=1,∵a1=2,∴
=
,
∴{
}是以
為首項(xiàng),以1為公差的等差數(shù)列,∴
=
+(n﹣1)=
,∴an=![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
。在以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,圓
的方程為
。
(1)寫(xiě)出直線
的普通方程和圓
的直角坐標(biāo)方程;
(2)若點(diǎn)P坐標(biāo)為
,圓
與直線
交于
兩點(diǎn),求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市化工廠三個(gè)車間共有工人1 000名,各車間男、女工人數(shù)如下表:
第一車間 | 第二車間 | 第三車間 | |
女工 | 173 | 100 | y |
男工 | 177 | x | z |
已知在全廠工人中隨機(jī)抽取1名,抽到第二車間男工的可能性是0. 15.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全廠抽取50名工人,問(wèn)應(yīng)在第三車間抽取多少名?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如表的列聯(lián)表:
算得,K2≈7.8.見(jiàn)附表:參照附表,得到的正確結(jié)論是( )
男 | 女 | 總計(jì) | |||||
愛(ài)好 | 40 | 20 | 60 | ||||
不愛(ài)好 | 20 | 30 | 50 | ||||
總計(jì) | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
、
分別是橢圓
的左、右焦點(diǎn),點(diǎn)
是橢圓
上一點(diǎn),且
.
(1)求橢圓
的方程;
(2)設(shè)直線
與橢圓
相交于
,
兩點(diǎn),若
,其中
為坐標(biāo)原點(diǎn),判斷
到直線
的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)人的某一特征(如眼睛的大小)是由他的一對(duì)基因所決定,以d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個(gè)基因,假定父母都是混合性,問(wèn):
(1)1個(gè)孩子顯露顯性特征的概率是多少?
(2)“該父母生的2個(gè)孩子中至少有1個(gè)顯露顯性特征”,這種說(shuō)法正確嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
在點(diǎn)
處的切線與直線
垂直.(注:
為自然對(duì)數(shù)的底數(shù))
(1)求
的值;
(2)若函數(shù)
在區(qū)間
上存在極值,求實(shí)數(shù)
的取值范圍;
(3)求證:當(dāng)
時(shí),
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左焦點(diǎn)為
,右頂點(diǎn)為
,上頂點(diǎn)為
,過(guò)
、
、
三點(diǎn)的圓
的圓心坐標(biāo)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
(
為常數(shù),
)與橢圓
交于不同的兩點(diǎn)
和
.
(。┊(dāng)直線
過(guò)
,且
時(shí),求直線
的方程;
(ⅱ)當(dāng)坐標(biāo)原點(diǎn)
到直線
的距離為
,且
面積為
時(shí),求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個(gè)圓點(diǎn),第an個(gè)圖案中圓點(diǎn)的個(gè)數(shù)是an,按此規(guī)律推斷出所有圓點(diǎn)總和Sn與n的關(guān)系式為( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com