【題目】2016年1月1日,我國全面實(shí)行二孩政策,某機(jī)構(gòu)進(jìn)行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應(yīng)”“猶豫”和“不響應(yīng)”態(tài)度的人數(shù)如下表所示:
響應(yīng) | 猶豫 | 不響應(yīng) | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根據(jù)已知條件完成下面的
列聯(lián)表,并判斷能否有
的把握認(rèn)為猶豫與否與性別有關(guān)?請說明理由.
猶豫 | 不猶豫 | 總計(jì) | |
男性青年 | |||
女性青年 | |||
總計(jì) | 1800 |
參考公式:![]()
參考數(shù)據(jù):
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2) 若函數(shù)
有兩個零點(diǎn)
,
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
.
(Ⅰ)若函數(shù)
在區(qū)間(1,e)存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若對任意的
,都有
≥
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)
在
軸的正半軸上,過焦點(diǎn)
作斜率為
的直線交拋物線
于
兩點(diǎn),且
,其中
為坐標(biāo)原點(diǎn).
(1)求拋物線
的方程;
(2)設(shè)點(diǎn)
,直線
分別交準(zhǔn)線
于點(diǎn)
,問:在
軸的正半軸上是否存在定點(diǎn)
,使
,若存在,求出定點(diǎn)
的坐標(biāo),若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠BAD=
,AB=BC=
AD=a,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到如圖2中△A1BE的位置,得到四棱錐A1-BCDE.
![]()
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當(dāng)平面A1BE⊥平面BCDE時,四棱錐A1-BCDE的體積為36
,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的年收益分別為0.125萬元和0.5萬元(如圖).
![]()
![]()
(1)分別寫出兩種產(chǎn)品的年收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為拋物線
內(nèi)一定點(diǎn),過
作兩條直線交拋物線于
,且
分別是線段
的中點(diǎn).
![]()
(1)當(dāng)
時,求△
的面積的最小值;
(2)若
且
,證明:直線
過定點(diǎn),并求定點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱
中,
,
,點(diǎn)
為
中點(diǎn),連接![]()
交于點(diǎn)
,點(diǎn)
為
中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,正項(xiàng)數(shù)列
的前
項(xiàng)的積為
,且
,當(dāng)
時,
都成立.
(1)若
,
,
,求數(shù)列
的前
項(xiàng)和;
(2)若
,
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com