如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證AE⊥平面BCE;
(2)求二面角B-AC-E的大小;
(3)求點(diǎn)D到平面ACE的距離.
|
解法一:(1) ∵二面角D-AB-E為直二面角,且 (2)連結(jié)BD交AC于C,連結(jié)FG, ∵正方形ABCD邊長(zhǎng)為2,∴BG⊥AC,BG= 由(Ⅰ)AE⊥平面BCE,又 ∴在等腰直角三角形AEB中,BE= ∴二面角B-AC-E等于 (3)過(guò)點(diǎn)E作 ∵二面角D-AB-E為直二面角,∴EO⊥平面ABCD. 設(shè)D到平面ACE的距離為h, ∴點(diǎn)D到平面ACE的距離為
解法二:(Ⅰ)同解法一. (Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直線為x軸,AB所在直線為y軸,過(guò)O點(diǎn)平行于AD的直線為z軸,建立空間直角坐標(biāo)系O-xyz,如圖.
則 解得 令 又平面BAC的一個(gè)法向量為 ∴二面角B-AC-E的大小為 (Ⅲ)∵AD∥z軸,AD=2,∴ ∴點(diǎn)D到平面ACE的距離 |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| π | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
| 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com