【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取
名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 |
| 5 |
|
第2組 |
| ① |
|
第3組 |
| 30 | ② |
第4組 |
| 20 |
|
第5組 |
| 10 |
|
![]()
(1)請(qǐng)先求出頻率分布表中
位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第
組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在
名學(xué)生中隨機(jī)抽取
名學(xué)生接受
考官進(jìn)行面試,求:第
組至少有一名學(xué)生被考官
面試的概率.
【答案】(1)
人,
,直方圖見解析;(2)
人、
人、
人;(3)
.
【解析】
(1)由頻率分布直方圖能求出第
組的頻數(shù),第
組的頻率,從而完成頻率分布直方圖.
(2)根據(jù)第
組的頻數(shù)計(jì)算頻率,利用各層的比例,能求出第
組分別抽取進(jìn)入第二輪面試的人數(shù).
(3)設(shè)第
組的
位同學(xué)為
,第
組的
位同學(xué)為
,第
組的
位同學(xué)為
,利用列舉法能出所有基本事件及滿足條件的基本事件的個(gè)數(shù),利用古典概型求得概率.
(1)①由題可知,第2組的頻數(shù)為
人,
②第
組的頻率為
,
頻率分布直方圖如圖所示,
![]()
(2)因?yàn)榈?/span>
組共有
名學(xué)生,
所以利用分層抽樣在
名學(xué)生中抽取
名學(xué)生進(jìn)入第二輪面試,每組抽取的人數(shù)分別為:
第
組:
人,
第
組:
人,
第
組:
人,
所以第
組分別抽取
人、
人、
人進(jìn)入第二輪面試.
(3)設(shè)第
組的
位同學(xué)為
,第
組的
位同學(xué)為
,第
組的
位同學(xué)為
,
則從這六位同學(xué)中抽取兩位同學(xué)有
種選法,分別為:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
其中第
組的
位同學(xué)
中至少有一位同學(xué)入選的有
種,分別為:
,
,
,
∴第
組至少有一名學(xué)生被
考官面試的概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2=4的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線C1:
過點(diǎn)P且離心率為
.
![]()
(1)求C1的方程;
(2)若橢圓C2過點(diǎn)P且與C1有相同的焦點(diǎn),直線l過C2的右焦點(diǎn)且與C2交于A,B兩點(diǎn),若以線段AB為直徑的圓過點(diǎn)P,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)結(jié)論:
①命題“若a=0,則ab=0”的否命題是“若a=0,則ab≠0”;
②已知命題p:x∈R,x2+6x+11<0,則
p:x∈R,x2+6x+11≥0;
③若命題“
p”與命題“p或q”都是真命題,則命題q一定是真命題;
④命題“若0<a<1,則loga(a+1)<log![]()
其中正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)南宋時(shí)期的著名數(shù)學(xué)家秦九韶在他的著作《數(shù)學(xué)九章》中提出了秦九韶算法來計(jì)算多項(xiàng)式的值,在執(zhí)行如圖算法的程序框圖時(shí),若輸入的n=5,x=2,則輸出V的值為( ) ![]()
A.15
B.31
C.63
D.127
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小為60°,則AD的長(zhǎng)為( )
![]()
A.
B.
C. 2 D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教師調(diào)查了
名高三學(xué)生購買的數(shù)學(xué)課外輔導(dǎo)書的數(shù)量,將統(tǒng)計(jì)數(shù)據(jù)制成如下表格:
男生 | 女生 | 總計(jì) | |
購買數(shù)學(xué)課外輔導(dǎo)書超過 |
|
|
|
購買數(shù)學(xué)課外輔導(dǎo)書不超過 |
|
|
|
總計(jì) |
|
|
|
(Ⅰ)根據(jù)表格中的數(shù)據(jù),是否有
的把握認(rèn)為購買數(shù)學(xué)課外輔導(dǎo)書的數(shù)量與性別相關(guān);
(Ⅱ)從購買數(shù)學(xué)課外輔導(dǎo)書不超過
本的學(xué)生中,按照性別分層抽樣抽取
人,再從這
人中隨機(jī)抽取
人詢問購買原因,求恰有
名男生被抽到的概率.
附:
,
.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=logax(a>0且a≠1)的圖象過點(diǎn)(4,2),
(1)求a的值.
(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定義域.
(3)在(2)的條件下,求g(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實(shí)數(shù)a的值;
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,ABC﹣A1B1C1為三棱柱,且AA1⊥平面ABC,四邊形ABCD為平行四邊形,AD=2CD,∠ADC=60°. ![]()
(1)若AA1=AC,求證:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值為
,求三棱錐C1﹣A1CD的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com