【題目】設(shè)數(shù)列
(n=1,2,3,…)的前n項和Sn滿足
,且
,
,
成等差數(shù)列.
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)求數(shù)列
的前n項和.
【答案】(1)an=2n.(2)![]()
【解析】試題分析:
(1)由題意結(jié)合前n項和與通項公式的關(guān)系可得數(shù)列{an}是首項為2,公比為2的等比數(shù)列,則an=2n.
(2)結(jié)合(1)中求得的通項公式分組求和可得數(shù)列
的前n項和為
.
試題解析:
(1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n≥2),
即an=2an-1(n≥2),
從而a2=2a1,a3=2a2=4a1,又因為a1,a2+1,a3成等差數(shù)列,即a1+a3=2(a2+1),
所以a1+4a1=2(2a1+1),解得a1=2,
所以數(shù)列{an}是首項為2,公比為2的等比數(shù)列,故an=2n.
(2)設(shè)
的前n項和為
,
則![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝
元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝
元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(1)若花店一天購進
枝玫瑰花,求當天的利潤
(單位:元)關(guān)于當天需求量
(單位:枝,
)的函數(shù)解析式.
(2)花店記錄了
天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 |
|
|
|
|
|
|
|
頻數(shù) |
|
|
|
|
|
|
|
假設(shè)花店在這
天內(nèi)每天購進
枝玫瑰花,求這
天的日利潤(單位:元)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還
升,
升,
升,1斗為10升,則下列判斷正確的是( )
A.
,
,
依次成公比為2的等比數(shù)列,且![]()
B.
,
,
依次成公比為2的等比數(shù)列,且![]()
C.
,
,
依次成公比為
的等比數(shù)列,且![]()
D.
,
,
依次成公比為
的等比數(shù)列,且![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量
(小時)都在30小時以上,其中不足50小時的周數(shù)有5周,不低于50小時且不超過70小時的周數(shù)有35周,超過70小時的周數(shù)有10周.根據(jù)統(tǒng)計,該基地的西紅柿增加量
(百斤)與使用某種液體肥料
(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合
與
的關(guān)系?請計算相關(guān)系數(shù)
并加以說明(精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數(shù)受周光照量
限制,并有如下關(guān)系:
周光照量 |
|
|
|
光照控制儀最多可運行臺數(shù) | 3 | 2 | 1 |
若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.
附:相關(guān)系數(shù)公式
,參考數(shù)據(jù)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當
時,討論函數(shù)
的單調(diào)性;
(2)當
,
時,對任意
,有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點
兩點.
(Ⅰ)求橢圓
的方程及離心率;
(Ⅱ)設(shè)
為第三象限內(nèi)一點且在橢圓
上,橢圓
與y軸正半軸交于B點,直線
與
軸交于點
,直線
與
軸交于點
,求證:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標
中,圓
,圓
。
(Ⅰ)在以O為極點,x軸正半軸為極軸的極坐標系中,分別寫出圓
的極坐標方程,并求出圓
的交點坐標(用極坐標表示);
(Ⅱ)求圓
的公共弦的參數(shù)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知向量
,設(shè)
,向量
.
(1)若
,求向量
與
的夾角;
(2)若
對任意實數(shù)
都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)滿足以下兩個條件的有窮數(shù)列
,
,
,
為
階“期待數(shù)列”:
①
;
②
.
(
)分別寫出一個單調(diào)遞增的
階和
階“期待數(shù)列”.
(
)若某
階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式.
(
)記
階“期待數(shù)列”的前
項和為
,試證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com