【題目】國(guó)際象棋比賽中.勝局一得1分,平一局得0.5分,負(fù)一局得0分。今有8名選手進(jìn)行單循環(huán)比賽(每?jī)扇司愐痪郑愅旰蟆l(fā)現(xiàn)各選手的得分均不相同,當(dāng)按得分由大到小排列好名次后,第四名選手得4.5分,第二名的得分等于最后四名選手得分總和.問(wèn)前三名選手各得多少分?說(shuō)明理由.
【答案】見(jiàn)解析
【解析】
設(shè)第
名運(yùn)動(dòng)員為
.得分為
.
則
.
由于8名選手每天參加7局比賽,■的最多者得7分,即
.
每人與其條7人賽,具要賽
局,總積分為28分.
所以,
. ①
因每局得分為
種,所以
、
只能在
中取值.又知
,
. ②
若
,則
,
.
由①,
,但
,
∴
,這與
矛盾.故
.
但
,所以
.
這時(shí)
,
也就是
.
所以
,這不可能.
若
,矛盾.
所以,只能
.
此時(shí)
.
答:前三名選手得分依次為6.5,6.5.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
是等邊三角形,
是
邊上的動(dòng)點(diǎn)(含端點(diǎn)),記
,
.
![]()
(1)求
的最大值;
(2)若
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD是矩形,平面PCD⊥平面ABCD,M為PC中點(diǎn).求證:
(1)PA∥平面MDB;
(2)PD⊥BC.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)去大多數(shù)人采用儲(chǔ)蓄的方式將錢(qián)儲(chǔ)蓄起來(lái),以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢(qián)都用來(lái)儲(chǔ)蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來(lái),為了研究某種理財(cái)工具的使用情況,現(xiàn)對(duì)
年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:
,
,
,
,
,并整理得到頻率分布直方圖:
![]()
(1)求圖中的a值;
(2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個(gè)組中,各抽取多少人;
(3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題甲:“一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角相等或互補(bǔ).”命題乙:“底面為正三角形,側(cè)面為等腰三角形的三棱錐是正三棱錐.”命題丙:“過(guò)圓錐的兩條母線(xiàn)的截面,以軸截面的面積最大.”其中真命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)設(shè)
,當(dāng)
時(shí),求函數(shù)
的定義域,判斷并證明函數(shù)
的奇偶性;
(2)是否存在實(shí)數(shù)
,使函數(shù)
在
上單調(diào)遞減,且最小值為1?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
(
)的左右焦點(diǎn)分別為
,
為橢圓
上位于
軸同側(cè)的兩點(diǎn),
的周長(zhǎng)為
,
的最大值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若
,求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
是橢圓
的右焦點(diǎn),點(diǎn)
,
分別是
軸,
軸上的動(dòng)點(diǎn),且滿(mǎn)足
.若點(diǎn)
滿(mǎn)足
(
為坐標(biāo)原點(diǎn)).
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)
任作一直線(xiàn)與點(diǎn)
的軌跡交于
,
兩點(diǎn),直線(xiàn)
,
與直線(xiàn)
分別交于點(diǎn)
,
,試判斷以線(xiàn)段
為直徑的圓是否經(jīng)過(guò)點(diǎn)
?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
為常數(shù).
若曲線(xiàn)
在
處的切線(xiàn)斜率為-2,求該切線(xiàn)的方程;
求函數(shù)
在
上的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com