【題目】已知函數
.
(1)證明:函數
在區間
存在唯一的極小值點
,且
;
(2)證明:函數
有且僅有兩個零點.
科目:高中數學 來源: 題型:
【題目】某高校在2016年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下表所示.
組號 | 分組 | 頻數 | 頻率 |
第1組 |
| 5 | 0.050 |
第2組 |
| n | 0.350 |
第3組 |
| 30 | p |
第4組 |
| 20 | 0.200 |
第5組 |
| 10 | 0.100 |
合計 | 100 | 1.000 |
![]()
(1)求頻率分布表中n,p
(2)為了能選拔出最優秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取6名學生進入第二輪面試,則第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定從6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有1名學生被甲考官面試的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代數學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應償還多少?該問題中,1斗為10升,則馬主人應償還( )升粟?
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業通過調查問卷(滿分50分)的形式對本企業900名員工的工作滿意程度進行調查,并隨機抽取了其中30名員工(16名女工,14名男工)的得分,如下表:
女 | 47 | 36 | 32 | 48 | 34 | 44 | 43 | 47 | 46 | 41 | 43 | 42 | 50 | 43 | 35 | 49 |
男 | 37 | 35 | 34 | 43 | 46 | 36 | 38 | 40 | 39 | 32 | 48 | 33 | 40 | 34 |
(1)根據以上數據,估計該企業得分大于45分的員工人數;
(2)現用計算器求得這30名員工的平均得分為40.5分,若規定大于平局得分為 “滿意”,否則為 “不滿意”,請完成下列表格:
“滿意”的人數 | “不滿意”的人數 | 合計 | |
女員工 | 16 | ||
男員工 | 14 | ||
合計 | 30 |
(3)根據上述表中數據,利用獨立性檢驗的方法判斷,能否在犯錯誤的概率不超過1%的前提下,認為該企業員工“性別”與“工作是否滿意”有關?
參考數據:
P(K2 | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子里裝有大小均勻的6個小球,其中有紅色球4個,編號分別為1,2,3,4;白色球2個,編號分別為4,5,從盒子中任取3個小球(假設取到任何—個小球的可能性相同).
(1)求取出的3個小球中,含有編號為4的小球的概率;
(2)在取出的3個小球中,小球編號的最大值設為
,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某IT從業者繪制了他在26歲~35歲(2009年~2018年)之間各年的月平均收入(單位:千元)的散點圖:
![]()
(1)由散點圖知,可用回歸模型
擬合
與
的關系,試根據附注提供的有關數據建立
關于
的回歸方程
(2)若把月收入不低于2萬元稱為“高收入者”.
![]()
試利用(1)的結果,估計他36歲時能否稱為“高收入者”?能否有95%的把握認為年齡與收入有關系?
附注:①.參考數據:
,
,
,
,
,
,
,其中
,取
,![]()
②.參考公式:回歸方程
中斜率
和截距
的最小二乘估計分別為:
,![]()
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
③.
.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com