在四棱錐
中,底面
是正方形,側(cè)面
是正三角形,平面
底面
.![]()
(I) 證明:
平面
;
(II)求二面角
的余弦值.
(I)見解析;(II)
.
解析試題分析:(I)因?yàn)槠矫鎂AD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD;(II)法一:先做出所求二面角的平面角,再由余弦定理求平面角的余弦值,既得所求;法二:設(shè)AD的中點(diǎn)為O,連結(jié)VO,則VO⊥底面ABCD,又設(shè)正方形邊長為1,建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的空間坐標(biāo),分別求平面VAD的法向量和平面VDB的法向量,可得結(jié)論.
試題解析:(Ⅰ)因?yàn)槠矫鎂AD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD. 3分
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依題意設(shè)AB=AD=AV=1,所以BV=BD=
. 6分![]()
設(shè)VD的中點(diǎn)為E,連結(jié)AE、BE,則AE⊥VD,BE⊥VD,
所以∠AEB是面VDA與面VDB所成二面角的平面角. 9分
又AE=
,BE=
,所以cos∠AEB=
=
.
12分
(方法二)
(Ⅰ)同方法一. 3分
(Ⅱ)設(shè)AD的中點(diǎn)為O,連結(jié)VO,則VO⊥底面ABCD.
又設(shè)正方形邊長為1,建立空間直角坐標(biāo)系如圖所示. 4分![]()
則,A(
,0,0), B(
,1,0),
D(
,0,0), V(0,0,
);
7分
由(Ⅰ)知![]()
是平面VAD的法向量.設(shè)
是平面VDB的法向量,則
10分
∴
,
考點(diǎn):1、面面垂直的性質(zhì);2、二面角的求法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
CD=1,PD=
。![]()
(I)若M為PA中點(diǎn),求證:AC∥平面MDE;
(II)求直線PA與平面PBC所成角的正弦值;
(III)在線段PC上是否存在一點(diǎn)Q(除去端點(diǎn)),使得平面QAD與平面PBC所成銳二面角的大小為
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐A-BCDE中,底面四邊形BCDE是等腰梯形,BC∥DE,
=45
,O是BC的中點(diǎn),AO=
,且BC=6,AD=AE=2CD=2
,![]()
(1)證明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐
中,側(cè)面
是等邊三角形,在底面等腰梯形
中,
,
,
,
,
為
的中點(diǎn),
為
的中點(diǎn),
.![]()
(1)求證:平面
平面
;
(2)求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,且AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直,已知AB=2,AD=EF=1.![]()
(Ⅰ)設(shè)FC的中點(diǎn)為M,求證:OM∥平面DAF;
(Ⅱ)設(shè)平面CBF將幾何體EF-ABCD分割成的兩個(gè)錐體的體積分別為VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com