【題目】在
中,
,AC,AB邊上的中線長(zhǎng)之和等于9.
(1)求
重心M的軌跡方程;
(2)求頂點(diǎn)A的軌跡方程.
【答案】(1)
1(y≠0);(2)
1(y≠0)
【解析】
(1)由已知得△ABC重心M在以B、C為兩個(gè)焦點(diǎn)的橢圓,由此能求出△ABC重心M的軌跡方程.
(2)利用代入法,即可求頂點(diǎn)A的軌跡方程.
(1)如圖所示,以線段BC所在直線為x軸、線段BC的中垂線為y軸建立直角坐標(biāo)系
設(shè)M為△ABC的重心,BD是AC邊上的中線,CE是AB邊上的中線,由重心的性質(zhì)知|BM|
|BD|,|CM|
|CE|,于是|MB|+|MC|
|BD|
|CE|=6
根據(jù)橢圓的定義知,點(diǎn)M的軌跡是以B、C為焦點(diǎn)的橢圓.2a=6,2c=4,
∴a=3,b
,
故所求的橢圓方程為
1(y≠0)
(2)設(shè)A(x,y),則M(
x,
),代入
1(y≠0),
可得出頂點(diǎn)A的軌跡方程為
1(y≠0)
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線
與拋物線
(常數(shù)
)相交于不同的兩點(diǎn)
、
,且
(
為定值),線段
的中點(diǎn)為
,與直線
平行的切線的切點(diǎn)為
(不與拋物線對(duì)稱(chēng)軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱(chēng)為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
![]()
(1)用
、
表示出
點(diǎn)、
點(diǎn)的坐標(biāo),并證明
垂直于
軸;
(2)求
的面積,證明
的面積與
、
無(wú)關(guān),只與
有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連
、
,再作與
、
平行的切線,切點(diǎn)分別為
、
,小張馬上寫(xiě)出了
、
的面積,由此小張求出了直線
與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是拋物線
上一點(diǎn),經(jīng)過(guò)點(diǎn)
的直線
與拋物線
交于
、
兩點(diǎn)(不同于點(diǎn)
),直線
、
分別交直線
于點(diǎn)
、
.
(1)求拋物線方程及其焦點(diǎn)坐標(biāo);
(2)求證:以
為直徑的圓恰好經(jīng)過(guò)原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)
千件,需另投入成本
,當(dāng)年產(chǎn)量不足80千件時(shí),
(萬(wàn)元);當(dāng)年產(chǎn)量不小于80千件時(shí),
(萬(wàn)元),每件售價(jià)為0.05萬(wàn)元,通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)雙曲線
的左焦點(diǎn)
作圓
的切線交雙曲線的右支于點(diǎn)
,且切點(diǎn)為
,已知
為坐標(biāo)原點(diǎn),
為線段
的中點(diǎn)(
點(diǎn)在切點(diǎn)
的右側(cè)),若
的周長(zhǎng)為
,則雙曲線的漸近線的方程為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓
:
與圓
:
相切,并且橢圓
上動(dòng)點(diǎn)與圓
上動(dòng)點(diǎn)間距離最大值為
.
![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作兩條互相垂直的直線
,
,
與
交于
兩點(diǎn),
與圓
的另一交點(diǎn)為
,求
面積的最大值,并求取得最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知
三邊
,
,
的長(zhǎng)都是整數(shù),
,如果
,則符合條件的三角形的個(gè)數(shù)是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
是
的極大值點(diǎn),求
的取值范圍;
(2)當(dāng)
,
時(shí),方程
(其中
)有唯一實(shí)數(shù)解,求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com