【題目】已知球的直徑
,
是該球球面上的兩點(diǎn),
,
,則棱錐
的體積為_______.
【答案】![]()
【解析】
設(shè)球心為點(diǎn)O,作AB中點(diǎn)D,連接OD,CD,說明SC是球的直徑,利用余弦定理,三角形的面積公式求出S△SCD,和棱錐的高AB,即可求出棱錐的體積.
:設(shè)球心為點(diǎn)O,作AB中點(diǎn)D,連接OD,CD.因?yàn)榫段SC是球的直徑,
所以它也是大圓的直徑,則易得:∠SAC=∠SBC=90°
![]()
所以在Rt△SAC中,SC=4,∠ASC=30° 得:AC=2,SA=2![]()
又在Rt△SBC中,SC=4,∠BSC=30° 得:BC=2,SB=2
則:SA=SB,AC=BC
因?yàn)辄c(diǎn)D是AB的中點(diǎn)所以在等腰三角形ASB中,SD⊥AB且SD=
=
=![]()
在等腰三角形CAB中,CD⊥AB且CD=
=
=![]()
又SD交CD于點(diǎn)D 所以:AB⊥平面SCD 即:棱錐S﹣ABC的體積:V=
ABS△SCD,
因?yàn)椋篠D=
,CD=
,SC=4 所以由余弦定理得:cos∠SDC=(SD2+CD2﹣SC2)
=(
+
﹣16)
=
=![]()
則:sin∠SDC=
=![]()
由三角形面積公式得△SCD的面積S=
SDCDsin∠SDC=
=3
所以:棱錐S﹣ABC的體積:V=
ABS△SCD=
=![]()
故答案為:
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對心肺疾病入院的
人進(jìn)行問卷調(diào)查,得到了如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 |
|
|
|
女 |
|
|
|
合計(jì) |
|
|
|
(1)用分層抽樣的方法在患心肺疾病的人群中抽
人,其中男性抽多少人?
(2)在上述抽取的
人中選
人,求恰好有
名女性的概率;
(3)為了研究心肺疾病是否與性別有關(guān),請計(jì)算出統(tǒng)計(jì)量
,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?
下面的臨界值表供參考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
參考公式:
,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】校園準(zhǔn)備綠化一塊直徑為
的半圓形空地,點(diǎn)
在半圓圓弧上,△
外的地方種草,△
的內(nèi)接正方形
為一水池(
,
在
邊上),其余地方種花,若
,
,設(shè)△
的面積為
,正方形面積為
;
![]()
(1)用
和
表示
和
;
(2)當(dāng)
固定,
變化時,求
最小值及此時的角
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場按月訂購一種家用電暖氣,每銷售一臺獲利潤200元,未銷售的產(chǎn)品返回廠家,每臺虧損50元,根據(jù)往年的經(jīng)驗(yàn),每天的需求量與當(dāng)天的最低氣溫有關(guān),如果最低氣溫位于區(qū)間
,需求量為100臺;最低氣溫位于區(qū)間
,需求量為200臺;最低氣溫位于區(qū)間
,需求量為300臺。公司銷售部為了確定11月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年11月份各天的最低氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:
最低氣溫(℃) |
|
|
|
|
|
天數(shù) | 11 | 25 | 36 | 16 | 2 |
以最低氣溫位于各區(qū)間的頻率代替最低氣溫位于該區(qū)間的概率.
求11月份這種電暖氣每日需求量
(單位:臺)的分布列;
若公司銷售部以每日銷售利潤
(單位:元)的數(shù)學(xué)期望為決策依據(jù),計(jì)劃11月份每日訂購200臺或250臺,兩者之中選其一,應(yīng)選哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求曲線
在點(diǎn)
處的切線與坐標(biāo)軸圍成的三角形的面積;
(Ⅱ)若
在區(qū)間
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場,根據(jù)市場調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:
上市時間x天 | 2 | 6 | 20 |
市場價y元 | 102 | 78 | 120 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當(dāng)?shù)暮瘮?shù)描述該紀(jì)念章的市場價y與上市時間x的變化關(guān)系并說明理由:①
;②
;③
;
(2)利用你選取的函數(shù),求該紀(jì)念章市場價最低時的上市天數(shù)及最低的價格;
(3)利用你選取的函數(shù),若存在
,使得不等式
成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于
的不等式
(
為實(shí)數(shù))的解集為
,集合
.
(1)若
,求
的取值范圍;
(2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的最小值及
取到最小值時自變量x的集合;
(2)指出函數(shù)y=
的圖象可以由函數(shù)y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,m]時,函數(shù)y=f(x)的值域?yàn)?/span>
,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com