【題目】已知正三棱臺上底邊為3,下底邊為6,高為1,求斜高與側(cè)棱長.
【答案】解:如圖畫出正三棱臺,連接上下底面中心OO1 ,
令C,D為同一側(cè)面上上下底邊的中點(diǎn),
過BC做底面的垂線,垂足分別為EF,則E,F(xiàn)均在AD上,![]()
∵正三棱臺上底邊為3,下底邊為6,高為1,
∴OC=
,O1D=
,CE=1,
則斜高為
=
,
且OB=
,O1A=2
,BF=1,
則側(cè)棱長為
=2
【解析】連接上下底面中心OO1 , 令C,D為同一側(cè)面上上下底邊的中點(diǎn),過BC做底面的垂線,垂足分別為EF,則E,F(xiàn)均在AD上,結(jié)合棱臺上底邊為3,下底邊為6,高為1,利用勾股定理可得答案.
【考點(diǎn)精析】本題主要考查了棱臺的結(jié)構(gòu)特征的相關(guān)知識點(diǎn),需要掌握①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(π﹣2x),g(x)=2cos2x,則下列結(jié)論正確的是( )
A.函數(shù)f(x)在區(qū)間[
]上為增函數(shù)
B.函數(shù)y=f(x)+g(x)的最小正周期為2π
C.函數(shù)y=f(x)+g(x)的圖象關(guān)于直線x=
對稱
D.將函數(shù)f(x)的圖象向右平移
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)g(x)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=Asin(wx+φ)(A>0,w>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為(
,
),由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)(
π,0),φ∈(﹣
,
).
(1)求這條曲線的函數(shù)解析式;
(2)求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=4an﹣3(n∈N*).
(Ⅰ)證明:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示直角梯形ABCD中,AB∥DC,∠A=90°,AB=AD=2DC=4,畫出該梯形的直觀圖A′B′C′D′,并寫出其做法(要求保留作圖過程的痕跡.)![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin2x的圖象向左平移
個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是( )
A.y=cos2x
B.y=2cos2x
C.![]()
D.y=2sin2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)小明訂了一份報(bào)紙,送報(bào)人可能在早上6:30—7:30之間把報(bào)紙送到,小明離家的時(shí)間在早上7:00—8:00之間,則他在離開家之前能拿到報(bào)紙的概率( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC,△ABC為等腰直角三角形,∠BAC=90°,且AB=AA1=1,E,F(xiàn)分別是CC1 , BC的中點(diǎn).
(Ⅰ)求證:B1F⊥平面AEF;
(Ⅱ)求三棱錐E﹣AB1F的體積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺
中,
與
分別是棱長為1與2的正三角形,平面
平面
,四邊形
為直角梯形,
,
,
為
中點(diǎn),
.
![]()
(Ⅰ)是否存在實(shí)數(shù)
使得
平面
?若存在,求出
的值;若不存在,請說明理由;
(Ⅱ)在 (Ⅰ)的條件下,求直線
與平面
所成角的正弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com