如下圖,在四棱柱
中,底面
和側(cè)面
都
是矩形,
是
的中點(diǎn),
,
.
(1)求證:![]()
(2)求證:
平面
;
(3)若平面
與平面
所成的銳二面角的大小為
,求線段
的長(zhǎng)度.![]()
![]()
(1)詳見解析;(2)詳見解析;(3)
.
解析試題分析:(1)利用已知條件得到
,
,從而證明
平面
,得到
再結(jié)合
證明
平面
,從而得到
;(2)連接
、
證明四邊形
為平行四邊形,連接對(duì)角線的交點(diǎn)與點(diǎn)
的連線為
的中位線,再利用線面平行的判定定理即可證明
平面
;(3)在(1)的前提條件中
平面
下,選擇以點(diǎn)
為坐標(biāo)原點(diǎn),
、
分別為
軸、
軸的空間直角坐標(biāo)系,設(shè)
,利用法向量將條件“平面
與平面
所成的銳二面角的大小為
”進(jìn)行轉(zhuǎn)化,從而求出
的長(zhǎng)度.
試題解析:(1)因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/f/hnvnd1.png" style="vertical-align:middle;" />和側(cè)面
是矩形,
所以
,
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b7/1/0kwyp3.png" style="vertical-align:middle;" />,
所以
平面
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/45/7/mnmvg2.png" style="vertical-align:middle;" />平面
,
所以
;
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/87/f/ixrn7.png" style="vertical-align:middle;" />,
,
所以四邊形
是平行四邊形.
連接
交
于點(diǎn)
,連接
,則
為
的中點(diǎn).
在
中,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3d/8/1wxni3.png" style="vertical-align:middle;" />,
,
所以
.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/2/zpx8d2.png" style="vertical-align:middle;" />平面
,
平面
,
所以
平面
;
(3)由(1)可知
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/c/ioita4.png" style="vertical-align:middle;" />,
,
所以
平面
.
設(shè)G為AB的中點(diǎn),以E為原點(diǎn),
、
、
所在直線分別為
軸、
軸、![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長(zhǎng)為2的正方體
中,
分別是棱
的中點(diǎn),點(diǎn)
分別在棱
,
上移動(dòng),且
.
當(dāng)
時(shí),證明:直線
平面
;
是否存在
,使平面
與面
所成的二面角為直二面角?若存在,求出
的值;若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱
中,P是側(cè)棱
上的一點(diǎn),
.
(1)試確定m,使直線AP與平面BDD1B1所成角為60º;
(2)在線段
上是否存在一個(gè)定點(diǎn)
,使得對(duì)任意的m,
⊥AP,并證明你的結(jié)論. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,等腰梯形ABCD,AD//BC,P是平面ABCD外一點(diǎn),P在平面ABCD的射影O恰在AD上,
.![]()
(1)證明:
;
(2)求二面角A-BP-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=
AB.Q是PC上的一點(diǎn),且PA∥平面QBD.![]()
⑴確定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,
是以
為直徑的半圓
上異于
、
的點(diǎn),矩形
所在的平面垂直于半圓
所在的平面,且
.![]()
(1)求證:
;
(2)若異面直線
和
所成的角為
,求平面
與平面
所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面四邊形
中,
為
的中點(diǎn),
,
,
且
.將此平面四邊形
沿
折成直二面角
,
連接
,設(shè)
中點(diǎn)為
.![]()
(1)證明:平面
平面
;
(2)在線段
上是否存在一點(diǎn)
,使得
平面
?若存在,請(qǐng)確定點(diǎn)
的位置;若不存在,請(qǐng)說明理由.
(3)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如右圖,在棱長(zhǎng)為a的正方體ABCDA1B1C1D1中,G為△BC1D的重心,![]()
(1)試證:A1、G、C三點(diǎn)共線;
(2)試證:A1C⊥平面BC1D;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在矩形ABCD中,AB=3
,AD=6,BD是對(duì)角線,過點(diǎn)A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點(diǎn)D到點(diǎn)P的位置,且PB=
.![]()
(1)求證:PO⊥平面ABCE;
(2)求二面角EAPB的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com