【題目】已知數列
和
,記
.
(1)若
,求
;
(2)若
,求
關于m的表達式;
(3)若數列
和
均是項數為
項的有窮數列.,現將
和
中的項一一取出,并按照從小到大的順序排成一列,得到
.求證:對于給定的
,
的所有可能取值的奇偶性相同.
科目:高中數學 來源: 題型:
【題目】已知直線
.
(1)若直線不經過第四象限,求
的取值范圍;
(2)若直線
交
軸負半軸于
,交
軸正半軸于
,求
的面積的最小值并求此時直線
的方程;
(3)已知點
,若點
到直線
的距離為
,求
的最大值并求此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點
在正視圖上的對應點為
,圓柱表面上的點
在左視圖上的對應點為
,則在此圓柱側面上,從
到
的路徑中,最短路徑的長度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)求函數
的定義域D,并判斷
的奇偶性;
(2)如果當
時,
的值域是
,求a的值;
(3)對任意的m,
,是否存在
,使得
,若存在,求出t,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右點分別為
點
在橢圓上,且![]()
(1)求橢圓
的方程;
(2)過點(1,0)作斜率為
的直線
交橢圓
于M、N兩點,若
求直線
的方程;
(3)點P、Q為橢圓上的兩個動點,
為坐標原點,若直線
的斜率之積為
求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1000t生活垃圾.經分揀以后數據統計如下表(單位:
):根據樣本估計本市生活垃圾投放情況,下列說法錯誤的是( )
廚余垃圾”箱 | 可回收物”箱 | 其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
A.廚余垃圾投放正確的概率為![]()
B.居民生活垃圾投放錯誤的概率為![]()
C.該市三類垃圾箱中投放正確的概率最高的是“可回收物”箱
D.廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量的方差為20000
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,上海迪士尼樂園將一三角形地塊
的一角
開辟為游客體驗活動區,已知
,
、
的長度均大于
米,設
,
,且
、
總長度為
米.
![]()
(1)當
、
為何值時,游客體驗活動區
的面積最大,并求最大面積?
(2)當
、
為何值時,線段
最小,并求最小值?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com