【題目】在平面直角坐標(biāo)系xOy中,已知圓C經(jīng)過(guò)點(diǎn)A(1,3) ,B(4,2),且圓心在直線l:x-y-1=0上.
(1)求圓C的方程;
(2)設(shè)P是圓D:x2+y2+8x-2y+16=0上任意一點(diǎn),過(guò)點(diǎn)P作圓C的兩條切線PM,PN,M,N為切點(diǎn),試求四邊形PMCN面積S的最小值及對(duì)應(yīng)的點(diǎn)P坐標(biāo).
【答案】(1) x2+y2-4x-2y=0 (2) S最小10,P(-3,1)
【解析】試題分析:(1)設(shè)圓C的方程為x2+y2+Dx+Ey+F=0,根據(jù)條件得
,即可得解;
(2)依題意,S=2S△PMC=PM×MC =
,當(dāng)PC最小時(shí),S最小,求PC最小即可.
試題解析:
(1)設(shè)圓C的方程為x2+y2+Dx+Ey+F=0,其圓心為(-
,-
).
因?yàn)閳AC經(jīng)過(guò)點(diǎn)A(1,3) ,B(4,2),且圓心在直線l:x-y-1=0上,
所以
解得![]()
所求圓C的方程為x2+y2-4x-2y=0.
(2)由(1)知,圓C的方程為(x-2)2+(y-1)2=5.
依題意,S=2S△PMC=PM×MC =
×
.
所以當(dāng)PC最小時(shí),S最小.
因?yàn)閳AM:x2+y2+8x-2y+16=0,所以M(-4,1),半徑為1.
因?yàn)?/span>C(2,1),所以兩個(gè)圓的圓心距MC=6.
因?yàn)辄c(diǎn)P∈M,且圓M的半徑為1,
所以PCmin=6-1=5.
所以Smin=
×
=10.
此時(shí)直線MC:y=1,從而P(-3,1).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
為圓
上的動(dòng)點(diǎn),
的坐標(biāo)為
,
在線段
的中點(diǎn).
(Ⅰ)求
的軌跡
的方程.
(Ⅱ)過(guò)點(diǎn)
的直線
與
交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的圓心在直線
上,且圓
經(jīng)過(guò)點(diǎn)
與點(diǎn)
.
(1)求圓
的方程;
(2)過(guò)點(diǎn)
作圓
的切線,求切線所在的直線的方程.
【答案】(1)
;(2)
或
.
【解析】試題分析:(1)求出線段
的中點(diǎn)
,進(jìn)而得到線段
的垂直平分線為
,與
聯(lián)立得交點(diǎn)
,∴
.則圓
的方程可求
(2)當(dāng)切線斜率不存在時(shí),可知切線方程為
.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為
,由
到此直線的距離為
,解得
,即可到切線所在直線的方程.
試題解析:((1)設(shè) 線段
的中點(diǎn)為
,∵
,
∴線段
的垂直平分線為
,與
聯(lián)立得交點(diǎn)
,
∴
.
∴圓
的方程為
.
(2)當(dāng)切線斜率不存在時(shí),切線方程為
.
當(dāng)切線斜率存在時(shí),設(shè)切線方程為
,即
,
則
到此直線的距離為
,解得
,∴切線方程為
.
故滿足條件的切線方程為
或
.
【點(diǎn)睛】本題考查圓的方程的求法,圓的切線,中點(diǎn)弦等問(wèn)題,解題的關(guān)鍵是利用圓的特性,利用點(diǎn)到直線的距離公式求解.
【題型】解答題
【結(jié)束】
20
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本
(單位:萬(wàn)元)與產(chǎn)品銷售收入
(單位:萬(wàn)元)存在較好的線性關(guān)系,下表記錄了最近5次產(chǎn)品的相關(guān)數(shù)據(jù).
| 7 | 10 | 11 | 15 | 17 |
| 19 | 22 | 25 | 30 | 34 |
(1)求
關(guān)于
的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬(wàn)元的毛利率更大還是投入成本24萬(wàn)元的毛利率更大(
)?
相關(guān)公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z=
,(m∈R,i是虛數(shù)單位).
(1)若z是純虛數(shù),求m的值;
(2)設(shè)
是z的共軛復(fù)數(shù),復(fù)數(shù)
+2z在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的一條切線,切點(diǎn)為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB. ![]()
(1)若CG=1,CD=4.求
的值.
(2)求證:FG∥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
過(guò)點(diǎn)
,且離心率為
.
(
)求橢圓
的方程.
(
)已知雙曲線
的離心率是橢圓
的離心率的倒數(shù),其頂點(diǎn)為橢圓的焦點(diǎn),求雙曲線
的方程.
(
)設(shè)直線
與雙曲線交于
,
兩點(diǎn),過(guò)
的直線
與線段
有公共點(diǎn),求直線
的傾斜角的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)男女學(xué)生是否喜愛(ài)古典音樂(lè)進(jìn)行了一個(gè)調(diào)查,調(diào)查者對(duì)學(xué)校高三年級(jí)隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛(ài) | 不喜愛(ài) | 總計(jì) | |
男學(xué)生 | 60 | 80 | |
女學(xué)生 | |||
總計(jì) | 70 | 30 |
附:K2=
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂(lè)的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再?gòu)倪@10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂(lè)會(huì)的現(xiàn)場(chǎng)觀看演出,求正好有X個(gè)男生去觀看演出的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的中心在原點(diǎn),短軸長(zhǎng)為
,點(diǎn)
在橢圓上.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若斜率為
的直線
與橢圓
交于
,
兩點(diǎn),
為弦
中點(diǎn),求點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資
類產(chǎn)品的收益與投資額成正比,投資
類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)
兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元.
(1)分別寫出
兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎么分配資金能使投資獲得最大收益,其最大收益是多少萬(wàn)元?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com