【題目】已知直線
在直角坐標(biāo)系
中的參數(shù)方程為
為參數(shù),
為傾斜角),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為
.
(1)寫出曲線
的直角坐標(biāo)方程;
(2)點(diǎn)
,若直線
與曲線
交于
兩點(diǎn),求使
為定值的
值.
【答案】(1)
(2)
【解析】試題分析:(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式
,對(duì)曲線方程
兩邊同時(shí)乘以
,得
,即x2+y2﹣x2﹣4x=0,所以y2=4x;(2)本問考查直線參數(shù)方程的幾何意義,將直線的參數(shù)方程帶入曲線y2=4x中,得到sin2θt2﹣4cosθt﹣4a=0,根據(jù)韋達(dá)定理表示出t1+t2 ,t1t2,于是
,可以求出
的值及定值.
試題解析:(1)∵ρ﹣ρcos2θ﹣4cosθ=0,∴ρ2﹣ρ2cos2θ﹣4ρcosθ=0,
∴x2+y2﹣x2﹣4x=0,即y2=4x.
(2)把為
(
為參數(shù),θ為傾斜角)代入y2=4x得:
sin2θt2﹣4cosθt﹣4a=0,
∴t1+t2=
,t1t2=
,
∴![]()
∴當(dāng)a=2時(shí),為定值
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(
),
,其中
為自然對(duì)數(shù)的底數(shù).
(1)若
恒成立,求實(shí)數(shù)
的取值范圍;
(2)若在(1)的條件下,當(dāng)
取最大值時(shí),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,sinC+sin(A﹣B)=3sin2B.若
,則
=( )
A.![]()
B.3
C.
或3
D.3或 ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,an+1﹣3an=3n(n∈N*),數(shù)列{bn}滿足bn=
.
(Ⅰ)求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:若0<a<1,則不等式ax2﹣2ax+1>0在R上恒成立,命題q:a≥1是函數(shù)
在(0,+∞)上單調(diào)遞增的充要條件;在命題 ①“p且q”、②“p或q”、③“非p”、④“非q”中,假命題是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為
.
(1)求拋物線的方程;
(2)若拋物線與直線y=2x﹣5無公共點(diǎn),試在拋物線上求一點(diǎn),使這點(diǎn)到直線y=2x﹣5的距離最短.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)證明:當(dāng)
時(shí),
;
(2)若不等式
對(duì)任意的正實(shí)數(shù)
恒成立,求正實(shí)數(shù)
的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(1+x)﹣log2(1﹣x),g(x)=log2(1+x)+log2(1﹣x).
(1)判斷函數(shù)f(x)奇偶性并證明;
(2)判斷函數(shù)f(x)單調(diào)性并用單調(diào)性定義證明;
(3)求函數(shù)g(x)的值域.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com