已知橢圓![]()
的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過(guò)點(diǎn)
的直線與橢圓
相交于兩點(diǎn)
,設(shè)
為橢圓上一點(diǎn),且滿足
(其中
為坐標(biāo)原點(diǎn)),求整數(shù)
的最大值.
(Ⅰ)
. (Ⅱ)
的最大整數(shù)值為1.
解析試題分析:(Ⅰ)由題知
, 所以
.即
.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/f/kgqtt.png" style="vertical-align:middle;" />,所以
,
.
故橢圓
的方程為
. 5分
(Ⅱ)由題意知直線
的斜率存在.
設(shè)
:
,
,
,
,
由
得
.
,
.
,
8分
∵
,∴
,
,
.
∵點(diǎn)
在橢圓上,∴
,
∴
12分
,
∴
的最大整數(shù)值為1. 14分
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,存在性問(wèn)題研究。
點(diǎn)評(píng):難題,曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了橢圓的幾何性質(zhì)。對(duì)于存在性問(wèn)題,往往先假設(shè)存在,利用已知條件加以探究,以明確計(jì)算的合理性。本題(III)通過(guò)假設(shè)t,利用韋達(dá)定理進(jìn)一步確定t與k的關(guān)系式,通過(guò)確定函數(shù)的值域,得到t的范圍。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
雙曲線
=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為
,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過(guò)點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,點(diǎn)M為線段PQ的中點(diǎn).若點(diǎn)M在直線x=-2上的射影為N,滿足
·
=0,且|
|=10,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上,短軸的一個(gè)端點(diǎn)與左右焦點(diǎn)
、
組成一個(gè)正三角形,焦點(diǎn)到橢圓上的點(diǎn)的最短距離為
.
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作直線
與橢圓
交于
、
兩點(diǎn),線段
的中點(diǎn)為
,求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
,
分別是橢圓E:
+
=1(0﹤b﹤1)的左、右焦點(diǎn),過(guò)
的直線
與E相交于A、B兩點(diǎn),且
,
,
成等差數(shù)列。
(Ⅰ)求
;
(Ⅱ)若直線
的斜率為1,求b的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上的橢圓過(guò)點(diǎn)
,且它的離心率
.![]()
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓
相切的直線
交橢圓于
兩點(diǎn),若橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)拋物線方程為
,
為直線
上任意一點(diǎn),過(guò)
引拋物線的切線,切點(diǎn)分別為
.![]()
(1)求證:
三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)
點(diǎn)的坐標(biāo)為
時(shí),
.求此時(shí)拋物線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知橢圓
左、右焦點(diǎn)分別為F1、F2,點(diǎn)
,點(diǎn)F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設(shè)直線
與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角互補(bǔ),求證:直線
過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知直線
與曲線![]()
![]()
交于不同的兩點(diǎn)
,
為坐標(biāo)原點(diǎn).
(1)若
,求證:曲線
是一個(gè)圓;
(2)若
,當(dāng)
且
時(shí),求曲線
的離心率
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com