【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=
acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,分別求a和c的值.
【答案】
(1)解:∵bsinA=
acosB,由正弦定理可得:sinBsinA=
sinAcosB,
∵sinA≠0,∴sinB=
cosB,
B∈(0,π),
可知:cosB≠0,否則矛盾.
∴tanB=
,∴B= ![]()
(2)解:∵sinC=2sinA,∴c=2a,
由余弦定理可得:b2=a2+c2﹣2accosB,
∴9=a2+c2﹣ac,
把c=2a代入上式化為:a2=3,解得a=
,
∴ ![]()
【解析】(1)由bsinA=
acosB,由正弦定理可得:sinBsinA=
sinAcosB,化簡整理即可得出.(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,代入計算即可得出.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:
,以及對余弦定理的定義的理解,了解余弦定理:
;
;
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , a1=10,an+1=9Sn+10.
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè)
對所有的n∈N*都成立的最大正整數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
),其圖象相鄰兩條對稱軸之間的距離為
,且函數(shù)f(x+
)是偶函數(shù),下列判斷正確的是( )
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)的圖象關(guān)于點(
,0)d對稱
C.函數(shù)f(x)的圖象關(guān)于直線x=﹣
對稱
D.函數(shù)f(x)在[
,π]上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和Sn滿足Sn=
an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對任意n∈N*,
+
+…+
<k都成立,求k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義平面向量之間的一種運算“⊙”如下:對任意的
,令
,下面說法錯誤的是( )
A.若
與
共線,則
⊙
=0
B.
⊙
=
⊙ ![]()
C.對任意的λ∈R,有
⊙
=
⊙
)
D.(
⊙
)2+(
)2=|
|2|
|2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
是常數(shù)且
),對于下列命題:
①函數(shù)
的最小值是
;
②函數(shù)
在
上是單調(diào)函數(shù);
③若
在
上恒成立,則
的取值范圍是
;
④對任意的
且
,恒有![]()
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2 , a4的等差中項.
(1)求數(shù)列{an}的通項公式
(2)若bn=anlog
an , Sn=b1+b2+b3+…+bn , 對任意正整數(shù)n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com