【題目】已知定義在(1,+∞)上的函數(shù)f(x)=
.
(1)當m≠0時,判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(2)當m=
時,求解關(guān)于x的不等式f(x2-1)>f(3x-3).
【答案】(1)見解析;(2)(
,2)
【解析】
(1)利用函數(shù)單調(diào)性的定義進行證明即可;(2)利用函數(shù)的單調(diào)性寫出滿足的不等式組,從而可得不等式的解集.
(1)根據(jù)題意,設(shè)1<x1<x2,
則f(x1)-f(x2)=
-
=m×
,
又由1<x1<x2,則(x2-x1)>0,(x2-1)>0,(x1-1)>0,
當m>0時,f(x1)>f(x2),f(x)在(1,+∞)上遞減;
當m<0時,f(x1)<f(x2),f(x)在(1,+∞)上遞增;
(2)當m=
時,f(x)為減函數(shù),則f(x2-1)>f(3x-3)
,
解可得:
<x<2,
即不等式的解集為(
,2)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2個、3個、4個,乙袋中紅色、黑色、白色小球的個數(shù)均為3個,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,問兩只手中所取的球顏色不同的概率是多少?
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記max{a,b}=
,設(shè)M=max{|x﹣y2+4|,|2y2﹣x+8|},若對一切實數(shù)x,y,M≥m2﹣2m都成立,則實數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活中進行信息交流的重要工具.據(jù)統(tǒng)計,某公司200名員工中90%的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有60人,其余的員工每天使用微信時間在一小時以上,若將員工分成青年(年齡小于40歲)和中年(年齡不小于40歲)兩個階段,那么使用微信的人中75%是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,那么經(jīng)常使用微信的員工中都是青年人.
(1)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出并完成2×2列聯(lián)表:
![]()
(2)由列聯(lián)表中所得數(shù)據(jù)判斷,是否有99.9%的把握認為“經(jīng)常使用微信與年齡有關(guān)”?
(3)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取6人,從這6人中任選2人,求選出的2人,均是青年人的概率.
附:
![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=AD=2,BC=1,CD=
. ![]()
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=sinx的圖象向右平移
個單位,橫坐標縮小至原來的
倍(縱坐標不變)得到函數(shù)y=g(x)的圖象.
(1)求函數(shù)g(x)的解析式;
(2)若關(guān)于x的方程2g(x)-m=0在x∈[0,
]時有兩個不同解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,四點
,
,
,
中恰有兩個點為橢圓
的頂點,一個點為橢圓
的焦點.
(1)求橢圓
的方程;
(2)若斜率為1的直線
與橢圓
交于不同的兩點
,且
,求直線
方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com