【題目】某市農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了
月
日至
月
日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 |
|
|
|
|
|
溫差 |
|
|
|
|
|
發(fā)芽數(shù)(顆) |
|
|
|
|
|
由表中根據(jù)
月
日至
月
的數(shù)據(jù),求的線性回歸方程
中的
,則
為______,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過
顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程____.(填“可靠”或“不可幕”)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為
,直線 的參數(shù)方程為
(
為參數(shù)).
(I)分別求曲線
的直角坐標(biāo)方程和直線
的普通方程;
(II)設(shè)曲線
和直線
相交于
兩點(diǎn),求弦長(zhǎng)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成一個(gè)大的正方形,若圖中直角三角形兩銳角分別為
,
,且小正方形與大正方形面積之比為
,則
的值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.直線
過點(diǎn)
.
(1)若直線
與曲線
交于
兩點(diǎn),求
的值;
(2)求曲線
的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國(guó)傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項(xiàng)是序號(hào)平方再除以2,奇數(shù)項(xiàng)是序號(hào)平方減1再除以2,其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項(xiàng)而設(shè)計(jì)的,那么在兩個(gè)判斷框中,可以先后填入( )
![]()
A.
是偶數(shù)?,
? B.
是奇數(shù)?,
?
C.
是偶數(shù)?,
? D.
是奇數(shù)?,
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“若
,則關(guān)于x的不等式
的解集為空集”,那么它的逆命題,否命題,逆否命題,以及原命題中,假命題的個(gè)數(shù)是( )
A.0B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
截圓
所得的弦長(zhǎng)為
.直線
的方程為
.
(1)求圓
的方程;
(2)若直線
過定點(diǎn)
,點(diǎn)
在圓
上,且
,
為線段
的中點(diǎn),求
點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有兩個(gè)命題:(1)不等式|x|+|x-1|>m的解集為R;(2)函數(shù)f(x)=(7-3m)x在R上是增函數(shù);如果這兩個(gè)命題中有且只有一個(gè)是真命題,則m的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
的圓心為
,且直線
與圓
相切,設(shè)直線
的方程為
,若點(diǎn)
在直線
上,過點(diǎn)
作圓
的切線
,切點(diǎn)為
.
(1)求圓
的標(biāo)準(zhǔn)方程;
(2)若
,試求點(diǎn)
的坐標(biāo);
(3)若點(diǎn)
的坐標(biāo)為
,過點(diǎn)
作直線與圓
交于
兩點(diǎn),當(dāng)
時(shí),求直線
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com