【題目】已知函數(shù)f(x)=x2﹣2ax+2,x∈[﹣5,5]
(1)求實(shí)數(shù)a的取值范圍,使y=f(x)在定義域上是單調(diào)遞減函數(shù);
(2)用g(a)表示函數(shù)y=f(x)的最小值,求g(a)的解析式.
【答案】解:(1)函數(shù)f(x)的對稱軸為x=a;
∵f(x)在[﹣5,5]上是單調(diào)遞減函數(shù);
∴a≥5;
∴實(shí)數(shù)a的取值范圍為[5,+∞);
(2)①當(dāng)a≤﹣5時(shí),f(x)在[﹣5,5]上單調(diào)遞增;
∴f(x)min=f(﹣5)=27+10a;
②當(dāng)﹣5<a<5時(shí),
;
③當(dāng)a≥5時(shí),f(x)在[﹣5,5]上單調(diào)遞減;
∴f(x)min=f(5)=27﹣10a;
∴
.
【解析】(1)可求出f(x)的對稱軸為x=a,而要使y=f(x)在[﹣5,5]上單調(diào)遞減,則需滿足a≥5,這便得到了a的取值范圍;
(2)可討論對稱軸x=a和區(qū)間[﹣5,5]的關(guān)系:分a≤﹣5,﹣5<a<5,和a≥5三種情況,然后根據(jù)f(x)在[﹣5,5]上的單調(diào)性及取得頂點(diǎn)情況求出每種情況的f(x)的最小值,從而便可得出g(a)的解析式.
【考點(diǎn)精析】利用函數(shù)單調(diào)性的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M、N分別為棱C1D1、C1C的中點(diǎn),有以下四個(gè)結(jié)論:
①直線AM與CC1是相交直線;
②直線AM與BN是平行直線;
③直線BN與MB1是異面直線;
④直線AM與DD1是異面直線.
其中正確的結(jié)論為 (注:把你認(rèn)為正確的結(jié)論的序號(hào)都填上).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
, 若對任意給定的t∈(1,+∞),都存在唯一的x∈R,滿足f(f(x))=2at2+at,則正實(shí)數(shù)a的最小值是( )
A.1
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=x﹣m2+m+2(m∈Z)在(0,+∞)上單調(diào)遞增.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)﹣ax+1,a為實(shí)常數(shù),求g(x)在區(qū)間[﹣1,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,空間幾何體
中,四邊形
是梯形,四邊形
是矩形,且平面
平面
,
,
,
是線段
上的動(dòng)點(diǎn).
(1)求證:
;
(2)試確定點(diǎn)
的位置,使
平面
,并說明理由;
(3)在(2)的條件下,求空間幾何體
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)
,且圓心
在直線
上,又直線
與圓C交于P,Q兩點(diǎn).
(1)求圓C的方程;
(2)若
,求實(shí)數(shù)
的值;
(3)過點(diǎn)
作直線
,且
交圓C于M,N兩點(diǎn),求四邊形
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,圓![]()
(1)過點(diǎn)
的圓的切線只有一條,求
的值及切線方程;
(2)若過點(diǎn)
且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,
,斜率為
的直線
過點(diǎn)
,且
和以
為圓
相切.
(1)求圓
的方程;
(2)在圓
上是否存在點(diǎn)
,使得
,若存在,求出所有的點(diǎn)
的坐標(biāo);若不存在說明理由;
(3)若不過
的直線
與圓
交于
,
兩點(diǎn),且滿足
,
,
的斜率依次為等比數(shù)列,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過點(diǎn)(1,2),求其解析式;
(2)若
,且不等式g(x2+x)>g(3﹣x)成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com