下表給出一個“等差數陣”.
其中每行、每列都是等差數列,aij表示位于第i行第j列的數.
(1)寫出a45的值.
(2)寫出aij的計算公式.
(3)證明正整數N在該等差數陣中的充要條件是2N+1可以寫成兩個不是1的正整數之積.
|
解:(1)a41=a11+(4-1)×3=13 a42=a12+(4-1)×5=22 a45=a41+(5-1)×9=49 (2)ai1=a11+(i-1)×3=3i+1 ai2=a12+(i-1)×5=5i+2 aij=ai1+(j-1)×(2i+1)=i+j+2ij (3)若N是該數陣中的數,則可令N=aij 故N=i+j+2ij(i,j∈N*) ∴2N+1=2i+2j+4ij+1=(2i+1)(2j+1) ∴2N+1能寫成兩個不是1的正整數之積. 若2N+1=p·q,N、p、q都是正整數, 且p、q不為1. ∵2N+1是奇數,∴p、q都是奇數. 不妨設p=2i+1,q=2j+1,i,j∈N* ∴2N+1=(2i+1)(2j+1) N=i+j+2ij=aij ∴N是該數陣中第i行第j列的數. |
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
下表給出一個“等差數陣”:
| 4 | 7 | ( ) | ( ) | ( ) | …… |
| …… |
| 7 | 12 | ( ) | ( ) | ( ) | …… |
| …… |
| ( ) | ( ) | ( ) | ( ) | ( ) | …… |
| …… |
| ( ) | ( ) | ( ) | ( ) | ( ) | …… |
| …… |
| …… | …… | …… | …… | …… | …… | …… | …… |
|
|
|
|
|
| …… |
| …… |
| …… | …… | …… | …… | …… | …… | …… | …… |
其中每行、每列都是等差數列,
表示位于第i行第j列的數。
(I)寫出
的值;(II)寫出
的計算公式;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:
4 | 7 | ( ) | ( ) | ( ) | … | a1j | … |
7 | 12 | ( ) | ( ) | ( ) | … | a2j | … |
( ) | ( ) | ( ) | ( ) | ( ) | … | a3j | … |
( ) | ( ) | ( ) | ( ) | ( ) | … | a4j | … |
… | … | … | … | … | … | … | … |
ai1 | ai2 | ai3 | ai4 | ai5 | … | aij | … |
… | … | … | … | … | … | … | … |
其中每行、每列都是等差數列,aij表示位于第 i 行第 j 列的數.
(Ⅰ)寫出a45的值;
(Ⅱ)寫出aij的計算公式;
(Ⅲ)證明:正整數N在該等差數陣中的充要條件是2N+1可以分解成兩個不是1的正整數之積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com