已知點P為圓

上一點,且點P到直線

距離的最小值為

,則m的值為 ( )
| A.-2 | B.2 | C. | D. |
本題考查直線和圓的位置關(guān)系,點到直線的距離公式即距離最值的幾何意義。
圓

配方得

圓心為

半徑為1;則圓心到直線

的距離為

根據(jù)幾何意義知圓

上的點到直線

的距離的最小值等于圓心到直線的距離減去圓的半徑;則

,則

.故選D
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題14分)已知圓C的圓心在直線

上,且與直線

相切,被直線

截得的弦長為

,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若直線

與曲線

有兩個交點,則k的取值范圍是
| A.[1,+∞) | B.[-1,- ) | C.( ,1] | D.(-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)已知⊙C:x
2+y
2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點,O為坐標(biāo)原點,且

=a,

=b(a>2,b>2).
(Ⅰ)求線段AB中點的軌跡方程.
(Ⅱ)求△ABC面積的極小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若圓

關(guān)于原點對稱,則圓

的方程是:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知過點P(-2,-2)作圓x2+y2+Dx-2y-5=0的兩切線關(guān)于直線x-y=0對稱,
設(shè)切點分別有A、B,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系xOy中,已知圓

上有且僅有四個點到直線12x-5y+c=0的距離為1,則實數(shù)c的取值范圍是__
__
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分8分)已知點

、

的坐標(biāo)分別為

、


,動點

滿足

.
(1)求點

的軌跡

的方程;
(2)過點

作直線與軌跡

相切,

求切點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
直線

與圓

相交所截的弦長為__________
查看答案和解析>>